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Abstract 
In this article, a model representing the spread of Hepatitis B disease is constructed as a nonlinear autonomous system. 
The model divides the considered human population into three classes, namely susceptible, infected, and recovered 
class. The dynamical analysis shows that there are two equilibrium points in the model, namely a disease-free 
equilibrium point and an endemic equilibrium point. The existence and stability of the equilibrium points depend on the 
basic reproduction number (ℛ0). The disease-free equilibrium point is local asymptotically stable when ℛ0 < 1,  while 
the endemic equilibrium point exists and is local asymptotically stable if ℛ0 > 1. The five parameters of the model are 
estimated by applying Downhill Simplex (Nelder-Mead) Algorithm and by using the infected data cases taken from such 
a hospital in Malang. The estimated parameters are the transmission of infection rate, the saturation rate, the 
vaccination rate, the recovery rate, and the immunity loss rate. The resulting parameter estimation supports the 
analytical result and is used to illustrate the analytical results numerically. Based on the considered model and the 
result of the parameters estimation, it can be concluded that the Hepatitis B spread in Malang is controllable. 
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INTRODUCTION1 

Hepatitis B disease is a type of infectious 
disease caused by the Hepatitis B Virus (HBV). 
That virus is a type of the virus family 
Hepadnaviridae [1]. HBV is more easily spread 
than other viruses, like Hepatitis C Virus (HCV) or 
Human Immunodeficiency Virus (HIV). HBV can 
also be transmitted through sexual transmission 
[2]. According to a nationwide report in 2007 and 
2013, Hepatitis B cases in Indonesia are indicated 
from high to moderate [3].   

Many types of research have been conducted 
to describe the epidemic phenomenon by 
constructing mathematical models which divide 
the population into some classes. The classic 
epidemic model called the SIR model considers 
three classes, namely Susceptible, Infected, and 
Recovery class. The SIR model is introduced in 
1927, and the model is governed by the bilinear 
incidence rate [4]. Many modifications are 
applied to the classic SIR model based on the 
disease character. Capasso and Serio [5] in 1978 
modified the SIR model by applying a saturated 
incidence rate. In 2019, Khan et al. [6] 
constructed a SIR model Hepatitis B with a 
saturated transmission rate and added the 
vaccination factor to the model. Furthermore, 
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Khan et al. also assumed that recovered 
individuals have permanent immunity. 

Generally, the mathematical models contain 
some parameters that can be used to predict the 
behavior of the disease spread as long as their 
values are known. To determine the parameter 
values, we can do the estimation process to 
approximate the actual data with the solution of 
the model. Golgeli [7] analyzed a SIR Hepatitis B 
model with a bilinear transmission rate and 
performed the parameter estimation using a data 
set taken in Turkey. This model consists of four 
parameters, and one of the parameters is 
estimated. Golgeli concluded that Hepatitis B in 
Turkey stabilizes into a disease-free state. 

Based on the previous research, in this paper, 
a Hepatitis B disease model was constructed by 
modifying the model of Khan et al. [6] into the 
SIRS model. A dynamical analysis is conducted by 
determining the equilibrium point and the local 
stability of the equilibrium point. The parameter 
values of the SIRS model are obtained by 
employing the parameter estimation process. 
The infected cases data of Hepatitis B was 
retrieved from Dr. Saiful Anwar Hospital, a 
governmental hospital in Malang. Data from 
January 2015 to December 2019 were used in the 
estimation process. Furthermore, numerical 
simulation was performed to illustrate the 
analytical results related to the spread of 
Hepatitis B in Malang.   

 



 
 
 

J.Exp. Life Sci. Vol. 11 No. 3, 2021  ISSN. 2087-2852 
  E-ISSN. 2338-1655 

Hepatitis B Disease Model (Aulani, et al.) 85 

MATERIAL AND METHOD 
Model Formulation 

In this research, a Hepatitis B disease model 
was reconstructed and represented as a SIRS 
model by assuming that the recovered 
individuals can lose their immunity. Hence the 
recovered individual can be reinfected. The 
incidence rate is also modified into a saturated 
incidence rate. Based on those modifications, a 
nonlinear autonomous system consisting of three 
variables and eight parameters is proposed to 
describe the Hepatitis B spread.  

Equilibrium Point and Local Stability  
The equilibrium point of the model is 

obtained when the  size of all class of population 
in the model are constant. The linearization 
process around the equilibrium point is carried 
out to analyze the local stability of the 
equilibrium point. The eigen values of the 
Jacobian matrix  coming from the linearization 
process provides the information about the 
stability of the equilibrium point. If all of the 
eigen values of Jacobian matrix have negative 
real part, the equilibrium point is local 
asymptotically stable.  

Parameter Estimation  
The estimation process determines the value 

of the parameter in the model by minimizing the 
difference between the estimated solution of the 
model and the real data iteratively. Hence, the 
first step of the estimation process is considering 
the objective function which is used in [8]: 

𝑂𝑓 =∑𝑅𝑖
2

𝑖

1

=∑(𝑌𝑖 − 𝑓(𝑥𝑖 , 𝜃))
2

𝑖

1

            (1) 

 
where 𝑅𝑖  is the ith residual, 𝑌𝑖  is the ith data, and 
𝑓(𝑥𝑖 , 𝜃) is the numerical solution of the model 
with the vector of the parameters 𝜃. The 
objective function is minimized by using the 
Nelder-Mead Algorithm [9,10], as follows. 

1. Choose the initial value of the parameter 𝜃 
and the initial value of population as the 
variable in the model. 

2. Generate the population of the model 
𝑓(𝑥𝑖 , 𝜃) using the Runge-Kutta 4th order 
method. 

3. Determine the objective function (1) and 
sorted the values of objective function from 
smallest to largest values 

𝑂𝑓(𝜃⃗1) ≤ 𝑂𝑓(𝜃⃗2) ≤ 𝑂𝑓(𝜃3) ≤ ⋯ ≤ 𝑂𝑓(𝜃⃗𝑖+1). 

 

4. Calculate the reflection point  

𝜃⃗𝑟 = 𝜃⃗̅ + 𝜌 (𝜃⃗̅ − 𝜃⃗̅𝑖+1) 

where 𝜃⃗̅ = ∑
𝜃𝑖

𝑖

⃗⃗⃗𝑖
1 . The standard value for the 

coefficient of reflection is 𝜌 = 1. 

5. If 𝑂𝑓1 ≤ 𝑂𝑓𝑟 < 𝑂𝑓𝑖 , the reflection point is 

accepted. Terminate the iteration. 

6. If 𝑂𝑓𝑟 < 𝑂𝑓1 , calculate the expansion point  

𝜃⃗𝑒 = 𝜃⃗̅ + 𝜒 (𝜃⃗𝑟 − 𝜃⃗̅). 

The standard value for the coefficient of 
expansion is 𝜒 = 2. If 𝑂𝑓𝑒 < 𝑂𝑓𝑟 , accepted the 

expansion point 𝜃⃗𝑒 and terminated the 
iteration. If 𝑂𝑓𝑒 ≥ 𝑂𝑓𝑟, accepted the reflection 

point 𝜃⃗𝑟 and terminated the iteration. 

7. Determination of the contraction point. 
a. Outside. If 𝑂𝑓𝑖 ≤ 𝑂𝑓𝑟 < 𝑂𝑓𝑖+1calculate 

the outside contraction point 

𝜃⃗𝑐 = 𝜃⃗̅ + 𝛾 (𝜃𝑟 − 𝜃⃗̅). 

The standard value for the coefficient of 

contraction is  𝛾 =
1

2
. If 𝑂𝑓𝑐 ≤ 𝑂𝑓𝑟, 𝜃⃗𝑐  is 

accepted and terminated the iteration 
otherwise go to the next step. 

b. Inside. If 𝑂𝑓𝑟 ≥ 𝑂𝑓𝑖+1calculate the inside 

contraction point 

𝜃⃗𝑐𝑐 = 𝜃⃗̅ − 𝛾 (𝜃⃗̅ − 𝜃⃗𝑖+1). 

If 𝑂𝑓𝑐𝑐 ≤ 𝑂𝑓𝑖+1, 𝜃⃗𝑐𝑐  is accepted and 

terminated the iteration otherwise go to 
the next step. 

8. Shrink (reduction). Evaluate the objective 
function 𝑂𝑓  at each point 𝑣⃗𝑘, which the point 

is obtained based on 

𝑣⃗𝑘 = 𝜃⃗1 + 𝜎(𝜃⃗𝑘 − 𝜃⃗1) 

where 𝑘 = 2,… , 𝑖 + 1. Replace the 𝜃⃗𝑘 point 
with 𝑣⃗𝑘. The next iteration consist of 

𝜃⃗1, 𝑣⃗2, . . . , 𝑣⃗𝑖+1. The standard value for the 

coefficients of shrink (reduction) is 𝜎 =
1

2
. 

9. The iteration ends if the tolerance criteria 
have been reached as [11]. 

‖𝜃⃗𝑖+1 − 𝜃⃗𝑖‖ ≤ 𝜖𝜃 and 𝑂𝑓(𝜃⃗𝑖) − 𝑂𝑓(𝜃⃗𝑖+1) ≤ 𝜖𝑓. 

Numerical Simulation 
The parameter values obtained from the 

parameter estimation process are used in this 
part. The model is simulated numerically by using 
Runge-Kutta 4th order method to confirm the 
analytical results and to show the dynamic of the 
model. 
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Data Collection  
This research uses secondary data of the 

number of infected Hepatitis B from January 
2015 to December 2019. The data was taken 
from RSUD Dr. Saiful Anwar Malang. The data of 
the infected individuals are presented at Table 1. 

Table 1. The number of HBV infected  individuals 

 Number of infected 

Times 2015 2016 2017 2018 2019 

January 27 6 12 14 7 
February 13 5 6 14 7 
March 14 2 10 6 7 
April 8 5 8 11 11 
May 4 4 9 12 16 
June 5 8 5 2 7 
July 2 8 10 12 14 
August 13 7 15 7 9 
September 3 3 18 7 12 
October 4 12 16 13 15 
November 6 10 18 13 11 
December 6 11 10 11 10 

RESULT AND DISCUSSION 
Model Formulation 

Based on the assumption and the 
modification on the model of  Khan et al. in 2019 
[6] that have been described before, we propose 
a model of Hepatitis B transmission as follows. 

   
𝑑𝑆(𝑡)

𝑑𝑡
= Λ −

 𝛼 𝑆(𝑡)𝐼(𝑡)

1 + 𝛾𝐼(𝑡)
− (𝜇0 + 𝑣)𝑆 + 𝛿 𝑅(𝑡), 

      
𝑑𝐼(𝑡)

𝑑𝑡
=
 𝛼 𝑆(𝑡)𝐼(𝑡)

1 + 𝛾𝐼(𝑡)
− (𝜇0  + 𝜇1 + 𝛽)𝐼(𝑡), (2) 

      
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛽 𝐼(𝑡) + 𝑣𝑆(𝑡) − (𝜇0  + 𝛿)𝑅(𝑡), 

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the 
susceptible individual, the infected individual, 
and the recovered individual at time 𝑡, 
respectively. The parameters Λ, 𝛼, 𝜇0, 𝜇1, 𝛾, 𝑣, 𝛽, 

and 𝛿 represent the birth rate, the transmission 
of infection rate, the natural mortality rate, the 
death rate because of Hepatitis B infection, the 
saturation rate, the vaccination rate, the recovery 
rate, and the immunity loss rate respectively. The 
density of the total population considered in the 
model is the sum of the density of susceptible, 
infected, and recovered classes, namely 𝑁(𝑡) =
𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). 

Equilibrium Point of Model 

Since the equilibrium point of the model (2) is 
obtained when the  size of all class of population in 
the model are constant, then it is reached when 

 
𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0. It can be proved easily, that 

there are two equilibrium points, namely the 
disease-free equilibrium point 

𝐸0 = (𝑆0, 𝐼0, 𝑅0) =
Λ(𝜇0  + 𝛿)

𝜙
, 0,
𝑣Λ

𝜙
  

and the endemic equilibrium point 𝐸∗ =
(𝑆∗, 𝐼∗, 𝑅∗) 

𝑆∗ =
𝜂(1 + 𝛾  𝐼∗)

𝛼
, 

𝐼∗ =
Λ 𝛼(𝜇0 + 𝛿) − 𝜂𝜙

𝜂(𝛼 𝜇0 + 𝛾 𝜙) + 𝛼𝛿(𝜇0 + 𝜇1 )
, 

𝑅∗ =
𝛽 𝐼∗ + 𝑣 𝑆∗

𝜇0 + 𝛿
. 

Here 𝜂 = 𝜇0 + 𝜇1 + 𝛽 and 𝜙 = 𝜇0(𝜇0 + 𝛿 + 𝑣). 
Furthermore, by applying the Next Generation 
Matrix method [12], the basic reproduction 
number (ℛ0) is easily formulated, namely 

ℛ0 =
𝛼Λ(𝜇0 + 𝛿)

𝜂𝜙
. 

It is clear that the disease-free equilibrium always 

exists, while the endemic equilibrium exists when 

ℛ0 > 1. 

Stability of the Equilibrium Point 

The local stability of the equilibrium point can 
be determined through the linearization process, 
which provide the Jacobian matrix  

𝐽 =

(

  
 
−

𝛼𝐼

1 + 𝛾𝐼
− 𝜇0 − 𝑣 −

𝛼 𝑆

(1 + 𝛾𝐼)2
𝛿

𝛼𝐼

1 + 𝛾𝐼

𝛼 𝑆

(1 + 𝛾𝐼)2
− 𝜂 0

𝑣 𝛽 −𝜇0 − 𝛿)

  
 
. 

The result of the stability analysis is presented in 
the following theorems.   

Theorem 1. if the basic reproduction number is 
less than one (ℛ0 < 1), the disease-free 
equilibrium point (𝐸0) of system (2) is local 
asymptotically stable. 

Proof.  The Jacobian matrix at 𝐸0 is 

𝐽(𝐸0) =

(

  
 
−𝜇0 − 𝑣 −

𝛼Λ(𝜇0 + 𝛿)

 𝜙
𝛿

0
𝛼Λ(𝜇0 + 𝛿)

 𝜙
− 𝜂 0

𝑣 𝛽 −𝜇0 − 𝛿)

  
 
. 

𝐽(𝐸0) has three eigenvalues, namely 𝜆1 =
−(𝜇0 + 𝛿 + 𝑣), 𝜆2 = −𝜇0 and 𝜆3 = 𝜂(ℛ0 − 1). 
All eigenvalues are negative if ℛ0 < 1. Hence, the 

disease-free equilibrium 𝐸0 is local 
asymptotically stable when ℛ0 < 1. 
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Theorem 2. If ℛ0 > 1, the endemic equilibrium 
point (𝐸∗) of system (2) exist and is local 
asymptotically stable. 

Proof. The Jacobian matrix at 𝐸∗ is 

𝐽(𝐸∗) =

(

  
 
−
𝛼𝐼∗

𝜔1
− 𝜔2 −

𝛼 𝑆∗

𝜔1
2 𝛿

𝛼𝐼∗

𝜔1

𝛼 𝑆∗

𝜔1
2 − 𝜂 0

𝑣 𝛽 −𝜔3)

  
 

 

where 

𝜔1 = 1 + 𝛾𝐼
∗, 𝜔2 = 𝜇0 + 𝑣,𝜔3 = 𝜇0 + 𝛿 

Based on calculated |𝐽(𝐸∗) − 𝜆𝐼|, we get a 
polynomial equation of third degree. 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0,                (3) 

where 

𝑎1 = 𝜔2 +𝜔3 +
𝐼∗

𝜔1
(𝛼 + 𝜂𝛾), 

𝑎2 =
𝐼∗

𝜔1
(𝛼𝜔3 + 𝛼𝜂 + 𝜂𝛾𝜔3 + 𝜂𝛾𝜔2) + 𝜙, 

𝑎3 =
𝐼∗

𝜔1
(𝛼𝜇0𝜂 + 𝛼𝛿𝜇0 + 𝛼𝛿𝜇1 + 𝜙𝜂𝛾). 

Routh-Hurwitz criterion stated that all of the root 
of the equation (3) have negative real part if 

𝑎1 > 0,    𝑎3 > 0,     and 𝑎1𝑎2 − 𝑎3 > 0 [13]. It is 

clear that 𝑎1 > 0 and  𝑎3 > 0. By applying such a 
simple algebraic manipulation, it can be proved 

that 𝑎1𝑎2 − 𝑎3 > 0. Hence, the endemic 
equilibrium point is local asymptotically stable.  

 Parameter Estimation 
There are eight parameters in the SIRS model 

(2). In this paper, the three parameters are fixed, 
and the other five parameters are estimated. The 
idea of the estimation parameter is to minimize 
the objective function (1) so that the parameter 
values correspond to the real data. The first step 
to estimate the parameter is to define the initial 

values 𝜃⃗⃗0 = (α, 𝛾, 𝑣, 𝛿, 𝛽) = (0.000010260, 1.4, 
0.3816, 0.982, 0.1667). In the first period 
January 2015, the total population in Malang is 
866801, so we choose the initial values of the 

population as (𝑆0, 𝐼0, 𝑅0) = (866774, 27, 0). By 
following step 1 until step 9 in the Nelder Mead 
algorithm, which was described in the previous 
section, the iteration ends after the error 
tolerance is met. The parameter that makes the 
minimum objective function is the best one. The 

minimum values of the objective function was 
reached in the 1412th iteration. The best 
parameter values were presented at Table 2, and 
they can be used to determine the value of the 
basic reproduction number, namely ℛ0 =
0.00000167. 

Table 2. Estimated parameter value 

Parameter Value Source 

Λ 0.0025128 Dispendukcapil Malang 
𝛼 0.0000311 Estimated 
𝛾 0.022 Estimated 
𝜇0 0.0024205 Dispendukcapil Malang 
𝑣 0.965 Estimated 
𝛿 1.788 Estimated 
𝜇1 0.0000018 RSUD Dr. Saiful Anwar 
𝛽 1.248 Estimated 

 
Figure 1. Comparison of SIRS model of Hepatitis B and the   

infected data 

Numerical Simulation 
The SIRS model (2) is simulated by using the 

best parameter presented at Table 2. Figure 1 
shows that the numerical solution of the model 
approach the trend of the infected data of 
Hepatitis B.   

Figure 2. Simulation SIRS model of Hepatitis B 
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Figure 2 shows the profile of the density of 
the infected population when the length of the 
interval time is enlarged becomes 𝑡 = 11544. In 
accordance with the analytical result, eventually, 
the size of the infected population decreases and 
converges to 0 because the basic reproduction 
number  ℛ0 < 1. 

CONCLUSION 
A SIRS model representing the spread of the 

Hepatitis B disease model has been 
reconstructed in the form of a three-dimensional 
nonlinear autonomous differential equation 
system with eight parameters. The performed 
dynamical analysis shows that the model has a 
disease-free equilibrium point and an endemic 
equilibrium point. By applying the Next 
Generation Matrix method, the basic 
reproduction number ℛ0 has been formulated. 
The existence and the stability of the equilibrium 
points depend on the basic reproduction number 
ℛ0. The disease-free point always exists, while 
the endemic point only exists when ℛ0 > 1. By 
applying linearization around each equilibrium 
point, the local stability of the equilibrium points 
is investigated. The disease-free point is local 
asymptotically stable when  ℛ0 < 1.  Referring to 
the Routh-Hurwitz criteria, it can be shown that 
the endemic point is local asymptotically stable 
when this point exists.  

Based on the data of infected cases taken 
from a hospital in Malang, Indonesia, the five 
parameters of the model have been estimated. 
The numerical simulation of the SIRS model by 
using the estimated parameters reach the 
minimum error if compared to the infected data. 
The result of the simulation of the proposed 
model predicts that eventually, Malang can be a 
Hepatitis B-disease-free state. This result agrees 
with the analytical result since the estimated 
parameters give ℛ0 < 1. 
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