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  Abstract  
The spread of SARS (Severe Acute Respiratory Syndrome) disease in a human population is one of the phenomena that 
can be mathematically modeled. The exposed period of SARS disease underlies the formation of the SVEIR epidemic 
model which is a modification of the SVIR epidemic model by adding subpopulation E (exposed). In the SVEIR model, 
there are two control variables in the form of vaccination and treatment which aimed to minimize exposed subpopula-
tion, infected subpopulation, and control implementation cost. The Pontryagin’s minimum principle is used to obtain 
optimal control and system, thus minimizing objective functional as the objective to be achieved. Furthermore, the 
forward-backward sweep method is used for numerical simulation in order to determine the most appropriate control 
strategy in a finite time. The simulation results show that implementation of both vaccination and treatment is the most 
effective decision making to control the spread of SARS disease. 
  
Keywords: optimal control, Pontryagin’s minimum principle, SARS.  
 
 

INTRODUCTION 
Infectious diseases are caused by pathogens 

or biological agents such as virus, bacteria, fungi, 
and other microorganisms. Infectious diseases 
can be transmitted from one individual to 
another through a variety of intermediate such 
as body fluids, feces, and tools contamined by 
individual infected SARS virus [1]. Susceptible 
individual can be infected with the SARS virus as 
a result of making contact with infected individu-
al so that it can lead to new infection that will 
spread the disease to other susceptible individu-
al. This event is a sign of the spread of disease in 
a society or country that can increase mortality in 
a short time. It is reported by the WHO that in-
fectious disease contribute about 1/6 of total 
deaths worldwide and second factor causes of 
death [2]. 

SARS is an infectious disease caused by virus. 
The clinical symptoms of SARS disease are fever, 
dry cough, shortness of breath, and other symp-
toms similar to pneumonia [3]. The spread of 
SARS disease is very rapid, progressive, and fatal. 
Most people with SARS disease are adults be-
tween 25-70 years, but in some cases SARS also 
affects children under 15 [4]. The spread of SARS 
disease was first detected in November 2002 in 
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Guangdong province, China. Furthermore, SARS 
disease spread rapidly throughout the continent, 
especially in the Asia-Pacific region. In March 
2003, WHO reported SARS disease caused by a 
virus called coronavirus or SARS-CoV [3]. That 
caused 774 people died and 8098 people infect-
ed SARS-coV virus [5]. The extermination of the 
SARS outbreak is estimated to have cost about $ 
10-30 billion [6]. However, the amount of funds 
spent does not necessarily overcome the disease 
outbreaks optimally. 

The impact of infectious diseases are very 
harmful in a country or population, it is im-
portant to understand the dynamics of disease 
progression and develop the control of disease 
spread and consider the costs associated with 
control implementation. In this case, a mathe-
matical model is needed to illustrate future dis-
ease spread by involving information in the pre-
sent. Mathematical modeling is an important tool 
in understanding the dynamics of disease spread 
and decision-making processes related to the 
control program of a disease spread. The branch 
of mathematics developed to find the optimal 
way of controlling dynamic systems is called op-
timal control theory. The application of optimal 
control theory aims to estimate the effectiveness 
of various policies, control measures, and their 
associated costs [7]. 

Vaccination is a very popular control policy. 
Implementation of vaccination program is esti-
mated to prevent approximately 2-3 million 
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deaths each year and 25 diseases with vaccina-
tion approved by WHO. In recent decades, vac-
cination and some control policies such as treat-
ment, quarantine, isolation, screening, etc. are 
also applied to control the spread of infectious 
diseases [2]. 

In 2017, Kumar and Srivastava added control 
variables to the SVIR (Susceptible Vaccinated 
Infected Recovered) epidemic model in order to 
control the spread of the disease. In addition to 
vaccinations, treatment is also needed to prevent 
the spread of disease. Therefore, vaccination and 
treatment control strategies are used. On the 
economic side, the implementation of a control 
strategy within a country requires substantial 
cost. Limited funding by health or government 
institutions is a matter to be considered, so Ku-
mar and Srivastava also consider the costs in 
their research [2]. 

Some infectious diseases such as tuberculosis, 
influenza, measles, etc. have exposed period in 
the natural world. In the exposed period the sus-
ceptible individu does not show symptom of the 
disease and does not transmit the disease be-
cause the immune system is in good condition. 
This individu will stay in the exposed class during 
the exposed period. After the exposed period 
end or the immune decrease, the individu is in 
the class of infection and shows symptoms and 
then transmit the disease [8]. 

Epidemic models with latent stage and vac-
cination were investigated, expressed in the form 
of SVEIR namely Susceptible Vaccinated Exposed 
Infected Recovered [9]. Before the study, the 
SVEIR model has been studied to describe the 
spread of SARS disease [10]. However, there is no 
effort to control the spread of disease from those 
researchs. Previous research aimed to assess the 
potential impact of an anti-SARS vaccine is not 
perfect through mathematical modeling [10]. 
Further result show that an imperfect anti-SARS 
vaccine successfully reduces the spread of SARS 
in the community on the condition that the vac-
cine must have efficacy or effectiveness of at 
least 75% [10]. 

This study modifies the SVIR epidemic model 
into SVEIR by adding exposed subpopulation (E). 
This is due to the exposed period of SARS for 3-5 
days [1] and the subpopulation model E is based 
on the study [9]. In addition to adding subpopula-
tion E, it is assumed that individual infected with 
SARS cannot recover naturally by model [1]. This 
modification has a goal to make the model more 
real. Furthermore, two control functions that is 
vaccination control and treatment control are 

added to the SVEIR model. Vaccination is used to 
control the spread of SARS disease, where sus-
ceptible individual is given anti-SARS vaccine to 
build up immunity against SARS virus [10], and 
apply control policies in the form of treatment 
given to individuals infected with SARS. The ex-
istence of control function in this study aims to 
minimize exposed subpopulation and infected 
subpopulation so that the spread of SARS disease 
is not widespread and minimize the costs associ-
ated with the implementation of control. Optimal 
control issues resolved with the Pontryagin’s 
minimum principle. At the end, a numerical simu-
lation is done using the forward-backward sweep 
method. Furthermore, the simulation results are 
analyzed to determine the most effective control 
strategies in controlling the spread of SARS dis-
ease. 
 
MATERIALS AND METHODS 

In this study, SARS disease spread model as-
sumed that the individual who became the object 
of research is human, interaction between indi-
vidu occur in one population without any individu 
entering or leaving the population, the birth rate 
and the death rate are constant. The spread of 
SARS disease in this study focused on one popu-
lation divided into 5 subpopulations, namely sus-
ceptible subpopulation 𝑆, vaccinated subpo-
pulation 𝑉, exposed subpopulation 𝐸, infected 
subpopulation 𝐼, and recovered subpopulation  
𝑅. Furthermore, several research methods are 
used to achieve the objectives.  

 
Literature Study 

Literature study related to the research pro-
cess, such as the literature discussing the spread 
of disease, optimal control theory, the Pontryagin 
principle, and forward-backward sweep method. 
We also used other supporting references in 
problem solving in this study. 

 
Model Formulation 

Constructed spread model of infectious dis-
eases SARS with type SVEIR. The SVEIR model is 
obtained from the SVIR model which added sub-
population E (exposed). The subpopulation mod-
el E is based on the research of Li et al [9], where 
the susceptible individual infected with the dis-
ease due to contact with the infected individual 
will enter into the exposed (E) subpopulation 
during the exposed period. After the exposed 
period end, the individual begins to show clinical 
symptoms and has the ability to transmit the 
disease, so that the individual is included in the 
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infected subpopulation (𝐼). Furthermore, an as-
sumption is added to the SVEIR model that indi-
vidual infected with SARS cannot recover natural-
ly, it’s based on the model of Huang's research 
[1]. The addition of these assumption causes the 
natural recovery rate of infected individual is 
zero. 
 
Optimal Control Simulation 

Formulated optimal control problem and re-
solved with the Pontryagin’s minimum principle. 
Based on these principle required a necessary 
condition that must be met. The necessary condi-
tion can be generated with the Hamiltonian H 
function. The H function must be optimal in order 
to obtain the optimal system. If the optimal sys-
tem then achieved the optimal goal. The system 
can achieve optimal if the H function satisfies 
state equations, costate equations, and stationer 
condition. 

Numerical simulation is performed for opti-
mal control problem. The simulation includes 
simulating the spread of SARS disease when not 
given vaccination and treatment controls, when 
only vaccination control is given, when only 
treatment control is given, and when combina-
tion control of vaccination and treatment are 
given. The numerical simulation is solved using 
the forward-backward sweep method with 
Matlab software. The initial parameter values 
used in the simulations will be mentioned in the 
results and discussion. The initial parameter val-
ues are used to analyze and emphasize the simu-
lated results obtained. 

Analyzing the results of numerical simulation 
to find out the most effective or appropriate con-
trol strategies, thus minimize exposed subpopu-
lation, infected subpopulation, and costs associ-
ated with the implementation of control (vac-
cination and treatment). 

RESULT AND DISCUSSION  
SARS Epidemic Model 

In this section, the SVEIR epidemic model is 
formulated to illustrate the spread of SARS in a 
population divided into 5 subpopulations. Indi-
vidu in each subpopulation interact with each 
other. This interaction causes the movement of 
individu from one subpopulation to another. The 
flow of individu movement from one subpopula-
tion to another subpopulation is illustrated in 
Figure 1. The arrows entered in a subpopulation 
indicate the presence of incoming individual, so 
the number of individual in the subpopulation 
increases. The outbound arrows of a subpopula-

tion indicate the presence of an outgoing individ-
ual, so the number of individuals in the subpopu-
lation is reduced. 

 
Figure 1. Compartment diagram of the SVEIR epidemic 

model 
 

The number of individuals in each subpopula-
tion may vary from time to time due to the influ-
ence of natural factors such as birth and death as 
well as the presence of susceptible individual into 
infected individual and so on, so that the number 
of individuals each time can be expressed 
𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡).  

The rate of susceptible subpopulation change 
between time 𝑡0 and 𝑇 is 

𝑑𝑆

𝑑𝑡
= lim

∆𝑡→0

∆𝑆(𝑡)

∆𝑡
. 

The rate of subpopulation change also applies 
to the rate of change of vaccinated, exposed, 
infected, and recovered subpopulation. Based on 
Figure 1, the SARS disease spread model is ex-
pressed in the system of differential equations as 
follows: 

 

,SSSI
dt

dS
   

 

,11 VVVIS
dt

dV
   

 

,1 EEVISI
dt

dE
   

(1) 

,IIIE
dt

dI
T    

 

,1 RIV
dt

dR
T    

 

 

with initial density 
.0)0(,0)0(,0)0(,0)0(,0)0(  RIEVS   

In the SVEIR model expressed in the system 
of equations (1), all values of the parameters are 
assumed to be non-negative constants. 
Parameter   represents birth and mortality 
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natural rate,  is the transmission rate of disease 

when infected individual make contact with 

susceptible individual. 1  represent the trans-

mission rate of disease from individual infected 
with SARS against vaccinated individual who have 
not been immune to the disease,   is constant 

vaccination rate in susceptible subpopulation, 1  

represent immunity rate of vaccinated individual 
so that individual become recovered individual 

during or after the vaccination process, T  
is 

treatment rate of infected individual, dan   

represent rate of exposed individual become 
infected individual. 

Vaccination and treatment are selected as 
control policies because vaccination are easy  
obtained and applied in practice and supported 
by WHO [2]. Therefore, in this study, the SARS 
disease spread model expressed in model system 
(1) is modified into a model system (2) with vac-
cination and treatment as a control strategy to 
be discussed in the next chapter. 
 

Optimal Control Problem 
The SARS disease spread model with vaccina-

tion and treatment control strategies is obtained 
based on the system of equation (1) and the fol-
lowing statements. 
i. Susceptible subpopulation are given anti-

SARS vaccine with the aim of providing im-
munity to susceptible individual from SARS 
disease, thereby preventing transmission of 
the disease to susceptible individual. In some 
diseases, constant vaccination may not be a 
good choice in the economic context for any 
country. In addition, vaccine administration 
for large population need substantial cost and 
difficult to give vaccine for all susceptible in-
dividual in the population. Therefore, it is im-
portant to know the exact level and timing of 
the vaccine so that maximize the vaccinated 
individual with minimum vaccination cost 
over a finite time period. According to Kumar 
and Srivastava [2], it can be done by changing 
the constant vaccination rate   on model (1) 

become )(1 tu  function as vaccination control. 

Due to limited fund and time for health agen-
cies in implementing vaccination policies, 
then the policies should be limited in accord-
ance with established goal. Thus, it is as-
sumed that vaccination control is limited, i.e. 

1)(0 1  tu  [2]. 

ii. Infected subpopulation are given treatment 
to reduce the burden of disease and control 

the spread of infection. Treatment programs 
include diagnosis, drug administration, hospi-
talization, and other medical services. Similar 
to vaccination programs, treatment programs 
for infected individuals also require a large 
cost and must be minimized. Therefore, 

treatment rate T  on model (1) become 

)(2 tu  as treatment control and assumed that 

1)(0 2  tu  [2]. 

 
Thus, SARS disease spread model with vac-

cination and treatment control is as follows: 

,)(1 SStuSI
dt

dS
    

,)( 111 VVVIStu
dt

dV
    

,1 EEVISI
dt

dE
   

(2) 

,)(2 IIItuE
dt

dI
    

,)(21 RItuV
dt

dR
    

 
with a set of control function U , i.e. 

 ,],0[,2,1,1)(0)(),( 21 TtitututuU i   

t  represent time and T  represent final time for  
control strategy SARS disease. The final time for 
each disease is varied and the implementation of 
the control strategy depend on the objective of 
the control policy. Implementation of control will 
be stopped when the objective have been 
achieved. 

Application of optimal control theory in case 
of SARS disease spread with vaccination and 
treatment aims to minimize exposed subpopula-
tion, infected subpopulation, and costs associat-
ed with control implementation. This objective is 
expressed in an objective function ,J  i.e. 

,)](

)([)](),([

2
22

0

2
1121

dttuw

tuwIEtutuJ

T



   

 
 

(3) 

with positive constant 1w  represent the weight 

of vaccination and 2w  represent the weight of 

treatment should be minimized. The objectives 
expressed in equation (3) have the constraints 
expressed in the model systems (2). These con-
straints illustrate the pattern or model of the 
spread of SARS disease in a population where the 
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initial value of each subpopulation is known i.e. 
.0)0(,0)0(,0)0(,0)0(,0)0(  RIEVS   

The initial value is used to determine future 
value after vaccination and treatment control are 
given, so it can be seen the effectiveness of the 
methods to prevent the spread of SARS disease. 
If the functional value in equation (3) has a min-
imum functional value, then the control strategy 
is more effective. 

The functional value of J  can be minimized 
by applying the Pontryagin’s minimum principle. 
On these principle, a necessary condition must 
be met. These necessary condition may be gen-
erated by the Hamiltonian function (denoted H) 
defined as follows: 

𝐻(𝑡, 𝑥⃗, 𝑢⃗⃗, 𝜆) = 𝑓(𝑡, 𝑥⃗, 𝑢⃗⃗)

+ ∑ 𝜆𝑖(𝑡)𝑔𝑖(𝑡, 𝑥⃗, 𝑢⃗⃗)

𝑛

𝑖=1

, 

Where 𝑓 is the integrand of the objective func-

tion J in equation (3), 𝑔𝑖 is the right-hand side of 

the equations in system 2, and 𝜆𝑖 is the adjoint 
functions dependent on the number of state var-
iables. The state variable in this research are 5 

(𝑆, 𝑉, 𝐸, 𝐼, 𝑅). Furthermore, 𝐻 function must be 

optimal to obtain the optimal J  value, that is 

state equation, costate equation, and stationary 
condition must be satisfied. 

The state equation is satisfied when the par-
tial derivative of 𝐻 function to adjoint function 𝜆 
yields equations in system (2). The costate equa-

tion is satisfied when the partial derivative of the 
𝐻 function for each state variable is negative. 
The stationary condition is obtained when the 
partial derivative of the 𝐻 function to the control 

variable )(1 tu  and )(2 tu  is zero, so that the 

optimal control of )(*
1 tu  dan ),(*

2 tu that is 

 

 
,1,

2
,0maxmin)(

and, 1,
2

,0maxmin)(

2

54*
2

1

21*
1



















 





















 



w

I
tu

w

S
tu





 
with 5421   and  ,,,   are adjoint functions. If 

optimal control )(*
1 tu  and )(*

2 tu  are substituted 

in the state and costate equations then the opti-
mal system is obtained which can optimize the 

objective function .J   
 
 

Numerical Simulation 
In this section, numerical simulation results 

are used to analyze the impact of control policy 
strategies on disease dynamic and related costs 
of control implementation. Numerical simula-
tions of systems (2) and (3) use forward-
backward sweep method in the MATLAB soft-
ware. Initial values and parameter values are 
used for numerical simulations are presented in 
table 1. 

 
Table 1. Initial Values and Parameter Values 

)0(S  )0(V  )0(E  )0(I  )0(R  

0.8 0.04 0.08 0.04 0.04 
  

1    
1    

0.00005 0.04 0.3 0.01 0.02 

 
In order to analyze the utility of control poli-

cy, three numerical control strategies are per-
formed, i.e. 
strategy A: implementation of a single control 

policy that only applies vaccination 
to prevent the spread of SARS dis-
ease, 

strategy B: implementation of a combination 
control policy: vaccination and 
treatment to prevent the spread of 
SARS disease, and  

strategy C: implementation of a single control 
policy that only applies treatment 
to prevent the spread of SARS dis-
ease. 

The discussion of this paper includes numeri-
cal simulation by implementing control strategies 
A, B, C, and without vaccination or treatment 
control. The numerical simulation result in Figure 
2 show the changes in behavior of exposed sub-
population (E) when applied control strategy A, 
B, C and the weight of costs .2021  ww The 

number of exposed subpopulation has increased 
each time when no vaccination or treatment con-
trol are provided. After control strategy A is ap-
plied, the number of exposed subpopulation de-
creases faster than without control. The number 
of exposed subpopulation also decreased when 
applied control strategy B, i.e. the combination 
control strategy of vaccination and treatment are 
applied. 

When strategy C is applied, the number of 
subpopulation E shows no difference when it is 
given only treatment control and no control. This 
means, the implementation of the treatment 
control strategy only (strategy C) is ineffective to 
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reduce the number of exposed subpopulation. 
Thus, the implementation of vaccination control 
only can minimize the number of exposed sub-
population. However, it is better to be given a 
combination of controls i.e. vaccination and 
treatment to suppress the number of exposed 
subpopulation. 

 
Figure 2. Density of Exposed Subpopulation (E) with Control  

Strategy A, B, C, and Without Control 

 
The change in the number of infected sub-

populations (I) at any time in Figure 3 is same as 
the number of exposed subpopulation. The num-
ber of subpopulation I decreased significantly 
when the combination control of vaccination and 
treatment are given. The strategy is more effec-
tive than either vaccination control strategy only 
or treatment control strategy only. 

 
Figure 3. Density of Infected Subpopulation (I) with Control  

Strategy A, B, C, and Without Control 

 
From the Figures 2 and 3, it can seen that the 

number of exposed (E) and infected (I) subpopu-
lations reach the least value when combination 
control of vaccination and treatment is given. In 
other words, control strategy B is more effective 
than control strategy A and C. Level of vaccina-

tion and treatment are given every time (day), it 
can be seen in Figure 4. At first, vaccination con-
trol is given equal to 0.16 and treatment control 
is 0.07. When the number of exposed and infect-
ed subpopulations decrease, vaccination and 
treatment control are lowered to zero. That 
means, control of vaccination and treatment are 

stopped. 

 
Figure 4. Vaccination control 1u and treatment control 2u

are given every time (day) 

 
Figure 5 shows the effect of the weight of 

vaccination cost 1w  and the weight of treatment 

cost 2w  on the number of exposed subpopula-

tion (E), .200021  ww  When the weight of 

vaccination and treatment costs is enlarged a 
hundred times from the initial weight, the num-
ber of exposed subpopulation is not much differ-
ent from the number of exposed subpopulation 
when no control is given. This is due to very small 
vaccination and treatment controls that is equal 

to 310391.8  and 31096.2  , as shown in Fig-

ure 7. 

 
Figure 5. Density of Exposed Subpopulation (E) with Strategy 

Control B and Without Control when 

200021  ww  
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The small levels of vaccination control and 
treatment resulted in the number of infected 
subpopulations (I) not minimal, as the simulation 
results in Figure 6. That means, the population is 
still in an endemic condition where the spread of 
the disease occurs continuously. 

 
Figure 6. Density of Infected Subpopulation (I) with Strategy 

Control B and Without Control when 

200021  ww  

 
Figure 7. Vaccination control 1u and treatment control 2u

are given every time (day) when 200021  ww  
 

Furthermore, it is shown the effect of the 
weight of vaccination and treatment costs when 
it is reduced to ten times, i.e. equal to 

.221  ww  The simulation results in Figure 8 

show that the number of exposed subpopulation 
is more minimum than the number of exposed 
subpopulation on other simulation results. This is 
similar to the change in the number of infected 
subpopulation in Figure 9. This is because the 
control level of vaccination and treatment is 
greater than the control level of other simula-
tions, as shown in Figure 10. The vaccination con-
trol is given equal to 0.4322 and the treatment 
control is 0.3 at first. After the number of ex-
posed and infected subpopulations decrease, the 
control level of vaccination and treatment is re-

duced every time until it reaches zero value 
where the control is discontinued. 

 
Figure 8. Density of Exposed Subpopulation (E) with Strategy 

Control B and Without Control when 221  ww  

 
Figure 9. Density of Infected Subpopulation (I) with Strategy 

Control B and Without Control when 221  ww  

 
Figure 10. Vaccination control 1u and treatment control 2u

are given every time (day) when 221  ww  

 
The purpose of applying optimal control in 

this research is to minimize the objective func-
tional J  in equation (3). The objective functional 
value is influenced by the increase and decrease 
of the number of exposed subpopulation, infect-
ed subpopulation, and controls. 
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From Table 2, the minimum objective func-

tional value is equal to 17.0064. If the objective 

functional value is smaller then the control strat-
egy applied in controlling the spread of SARS dis-
ease is more effective. Thus, it can be concluded 
that control combination strategy of vaccination 
and treatment with small cost weight is the most 
effective strategy. 

 
Table 2. The objective functional value of each simulation for 

300t  
Strategy Objective Functional 

without control 

 021  uu  
419.5444 

with control 1u  

 201 w  
141.8792 

with control 2u  

 202 w  
403.3616 

with control 1u  and 2u  

 2021  ww  
88.3218 

with control 1u  and 2u  

 200021  ww  
376.7691 

with control 1u  and 2u  

 221  ww  
17.0064 

 
CONCLUSION 

In this research, we conclude that the imple-
mentation of combination control strategy in the 
form of vaccination and treatment is more effec-
tive to reduce the number of exposed subpopula-
tion (E) and infected subpopulation (I) than either 
the control strategy of vaccination only or the 
control strategy of treatment only. The weight of 
costs of vaccination and treatment controls can 
affect the levels of vaccination and treatment. If 
the weight of costs of vaccination and treatment 
are lower then the vaccination and treatment 
levels are greater. If the levels of vaccination con-
trol and treatment are getting bigger then the 
number of exposed and infected subpopulations 
are getting smaller. As a result, the objective 
functional value is getting smaller. 
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