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Abstract  
In this paper, an optimal control problem of a cervical cancer model with vaccination and screening as 
controls is discussed. This vaccine can stimulate the immune system to produce antibodies that can prevent 
the occurrence of human papillomavirus (HPV) infections, while screening is used as secondary prevention 
of early detection of cervical cancer cells so that treatment can begin immediately. The models were 
divided into two compartments, females and males. The female’s compartment consists of susceptible, 
vaccinated, infected, screening, cervical cancer, and recovered females. Meanwhile, the male’s 
compartment consists of susceptible, infected, and recovered males. The purpose of this optimal control 
was to minimize the number of infected females, infected males, and cervical cancer, as well as to minimize 
the cost of the controls. Optimal control was obtained by using the Pontryagin principle. Furthermore, an 
optimal control problem was solved numerically using the Forward-Backward Sweep method to determine 
the effect of vaccination and screening on the model. The results indicate that vaccination and screening as 
controls are effective in reducing the subpopulation of HPV infection, which can further reduce the 
occurrence of cervical cancer. 
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INTRODUCTION 
Cervical cancer is abnormal growth and 

development of cervix cells and causes some 
abnormal organ function [1]. Cervical cancer 
generally attacks the sexually active female. The 
cause of cervical cancer is Human Papillomavirus 
(HPV) infection, especially types 16 and 18. This 
virus can be transmitted through sexual activity 
changing partners [2]. The occurrence of cervical 
cancer is also increased in the population with 
several factors, including late diagnosis, low 
socioeconomic status, limited resources, limited 
infrastructure, and low degrees of education [3].  

Cervical cancer can be prevented by HPV 
vaccinations and screening examinations, such as 
the Pap smear test or IVA [4]. Vaccination is given 
to stimulate the immune system to produce 
antibodies. Further, these antibodies will prevent 
HPV from infecting cervical cells. Three types of 
vaccines can be used, namely bivalent, 
quadrivalent, and nonavalent. Meanwhile, the 
Pap smear test and the IVA test are also crucial in 
suppressing the incidence of cervical cancer 
immediately. This test is an early attempt to find 
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out the presence of cervical cancer cells so that 
treatment can be done. 

Related to the transmission of HPV infection 
and cervical cancer, in 2014, Pongsumpun [5] 
modeled the spread of cervical cancer in the 
female population. This study found that every 
woman could be infected by HPV when the 
occurrence of HPV infection is high. Therefore, a 
woman's risk of cervical cancer will also be high. 
In contrast to the model discussed by 
Pongsumpun, Malik et al. in 2016 [6] examined 
the optimal control of the spread of HPV in the 
presence of vaccination. The model consists of 
the female’s compartment and the male’s 
compartment. It is assumed that only the 
population of the susceptible female who gets 
vaccinated. There are three types of vaccines 
used as controls, namely bivalent, quadrivalent, 
and nonavalent vaccines. 

Furthermore, Sado [7] discussed the model of 
the spread of cervical cancer in the female 
population by adding the parameters of 
vaccination. Based on these results, the vaccine 
can reduce and control the transmission of 
cervical cancer due to HPV infection. Regarding 
the model involving vaccination and screening, 
Saldana et al. [8] discussed the optimal control of 
HPV infection transmission models without 
involving cervical cancer. The results of the study 
of Saldana et al. explain that vaccination and 



 
 

J.Exp. Life Sci. Vol. 10 No. 2, 2020  ISSN. 2087-2852 
  E-ISSN. 2338-1655 

Cervical Cancer Model (Kristanti, et al.) 73 

(1) 

(1) 

screening can reduce the level of infected 
individuals in both the female and male 
subpopulations. 

This research constructs a mathematical 
model of cervical cancer by vaccination and 
screening that modify the model of Malik et al. 
and Saldana et al. It was assumed that every 
susceptible female can have only one type of 
vaccine. In this model, cervical cancer can occur 
due to sexual interactions between female and 
male. Next, we investigated the effect of this 
interaction on both the female and male 
populations. Therefore, the population was 
divided into female and male compartments.  

MATERIAL AND METHOD 
The model of cervical cancer was constructed 

by involving control vaccination (𝒖𝟏) and 
screening (𝒖𝟐). Next, an optimal control problem 
was carried out with the following steps. 

a. Construct a cervical cancer model with 
vaccination and screening as controls. 

b. Define the objective functional to 
minimize the number of populations 
infected with HPV infection. 

c. Apply the Pontryagin principle to solve the 
optimal control problem. 

d. Determine the state, adjoint, and 
stationary conditions. 

e. Perform numerical simulations using the 
Sweep Forward and Backward method 
using MATLAB software. 

RESULT AND DISCUSSION 
Construction Model 

In the cervical cancer model, the population 
was divided into the female population and the 
male population. The female population was 
divided into six subpopulation: susceptible 
female (𝑆𝑓) consists of individuals who have not 

vaccinated, vaccinated females (𝑉) consists of 

individuals who carry out vaccinations, infected 
females (𝐼ℎ) consists of individuals infected with 
HPV, screening female (𝐼𝑠𝑐) consists of 
individuals who carry out prevention with Pap 
smear or IVA test, cervical cancer females (𝐶) 
consists of individuals with cervical cancer, 
recovered females (𝑅𝑓) consists of individuals 

who recover from the infection and having 
cleared from infection due to treatment or 
leaving the sexual activity.  

Meanwhile, the male population is divided 
into three subpopulations: susceptible male (𝑆𝑚) 
consists of individuals who have a chance of 
being infected with HPV, infected male (𝐽) 
consists of individual infected with HPV, and 
recovered male (𝑅𝑚) consists of individuals 
recovering from infection and having cleared 
from infection. The model is constructed under 
the assumptions, 

1. Only a subpopulation of the susceptible 
female is given vaccination using one type 
of vaccine, such as bivalent, quadrivalent, 
or nonavalent vaccine.  

2. Screening is also only done by a 
subpopulation of infected females.  

3. The transmission of HPV infection is 
caused by an interaction between 
susceptible subpopulation and infected 
subpopulation. 

4. Individual of recovered subpopulation who 
has been cleared of HPV infection will be 
able to lose the immunity and move to a 
susceptible population. 

 
The diagram of the model can be described as 

in Figure 1. Based on the assumption above, the 
model can be written in the form of differential 
equations:  

 
 

Figure 1. Flow diagram of the model 
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𝑑𝑆𝑓(𝑡)

𝑑𝑡
= 𝜋𝑓𝑁𝑓(𝑡) − 𝜙𝑆𝑓(𝑡) −

𝑐𝑓𝛽𝑚𝐽(𝑡)𝑆𝑓(𝑡)

𝑁𝑚(𝑡)
 

                −𝜇𝑓𝑆𝑓(𝑡) + 𝛼𝑅𝑓(𝑡), 
𝑑𝑉(𝑡)

𝑑𝑡
 =  𝜙𝑆𝑓(𝑡) − 𝜇𝑓𝑉(𝑡) − (1 − 𝜀)

𝑐𝑓𝛽𝑚𝐽(𝑡)𝑉(𝑡)

𝑁𝑚

, 

𝑑𝐼ℎ(𝑡)

𝑑𝑡
=  

𝑐𝑓𝛽𝑚𝐽(𝑡)𝑆𝑓(𝑡)

𝑁𝑚(𝑡)
+ (1 − 𝜀)

𝑐𝑓𝛽𝑚𝐽(𝑡)𝑉(𝑡)

𝑁𝑚(𝑡)
 

               −𝑝𝐼ℎ(𝑡) − 𝜇𝑓𝐼ℎ(𝑡) − 𝜃(1 − 𝑝)𝐼ℎ(𝑡), 
𝑑𝐼𝑠𝑐(𝑡)

𝑑𝑡
= 𝑝𝐼ℎ(𝑡) − 𝜎𝐼𝑠𝑐(𝑡) − 𝜇𝑓𝐼𝑠𝑐(𝑡) − 𝛿𝐼𝑠𝑐(𝑡), 

𝑑𝐶(𝑡)

𝑑𝑡
  = 𝛿𝐼𝑠𝑐(𝑡) + θ(1 − 𝑝)𝐼ℎ(𝑡) − (𝜇𝑓 + 𝛾)𝐶(𝑡), 

𝑑𝑅𝑓(𝑡)

𝑑𝑡
= 𝜎𝐼𝑠𝑐(𝑡) − 𝜇𝑓𝑅𝑓(𝑡) − 𝛼𝑅𝑓(𝑡), 

𝑑𝑆𝑚(𝑡)

𝑑𝑡
= 𝜋𝑚𝑁𝑚(𝑡) −

𝑐𝑚𝛽𝑓𝐼ℎ(𝑡)𝑆𝑚(𝑡)

𝑁𝑓(𝑡)
− 𝜇𝑚𝑆𝑚(𝑡) 

               +𝛼𝑅𝑚(𝑡), 
𝑑𝐽(𝑡)

𝑑𝑡
   =

𝑐𝑚𝛽𝑓𝐼ℎ(𝑡)𝑆𝑚(𝑡)

𝑁𝑓(𝑡)
− 𝜁𝐽(𝑡) − 𝜇𝑚𝐽(𝑡), 

𝑑𝑅𝑚(𝑡)

𝑑𝑡
= 𝜁𝐽(𝑡) − 𝜇𝑚𝑅𝑚(𝑡) − 𝛼𝑅𝑚(𝑡), 

where   
𝑁𝑓(𝑡) = 𝑆𝑓(𝑡) + 𝑉(𝑡) + 𝐼ℎ(𝑡) + 𝐼𝑠𝑐(𝑡) + 𝐶(𝑡) + 𝑅𝑓(𝑡), 

and 
𝑁𝑚(𝑡) = 𝑆𝑚(𝑡) + 𝐽(𝑡) + 𝑅𝑚(𝑡). 

The description of the parameters used in the 
model is described in Table 1. We normalize the 
equations (1) in terms of the proportions 

𝑆̅𝑓(𝑡) =
𝑆𝑓(𝑡)

𝑁𝑓(𝑡)
, 𝑉̅(𝑡) =

𝑉(𝑡)

𝑁𝑓(𝑡)
, 𝐼ℎ̅(𝑡) =

𝐼ℎ(𝑡)

𝑁𝑓(𝑡)
,  

𝐼𝑠̅𝑐(𝑡) =
𝐼𝑠𝑐(𝑡)

𝑁𝑓(𝑡)
, 𝐶̅(𝑡) =

𝐶(𝑡)

𝑁𝑓(𝑡)
, 𝑅̅𝑓(𝑡) =

𝑅𝑓(𝑡)

𝑁𝑓(𝑡)
, 

 𝑆̅𝑚(𝑡) =
𝑆𝑚(𝑡)

𝑁𝑚(𝑡)
, 𝐽(̅𝑡) =

𝐽(𝑡)

𝑁𝑚(𝑡)
, 𝑅̅𝑚(𝑡) =

𝑅𝑚(𝑡)

𝑁𝑚(𝑡)
. 

Then normalized system becomes, 

𝑑𝑆̅𝑓(𝑡)

𝑑𝑡
 = 𝜋𝑓 − 𝜙𝑆̅𝑓(𝑡) − 𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑆̅𝑓(𝑡) 

                    −𝜋𝑓𝑆̅𝑓(𝑡) + 𝛼𝑅̅𝑓(𝑡), 

𝑑𝑉̅(𝑡)

𝑑𝑡
  = 𝜙𝑆̅𝑓(𝑡) − (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑉̅(𝑡) − 𝜋𝑓𝑉̅(𝑡), 

𝑑𝐼ℎ̅(𝑡)

𝑑𝑡
 = 𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑆̅𝑓(𝑡) + (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑉̅(𝑡) 

                  −𝑝𝐼ℎ̅(𝑡) − 𝜃(1 − 𝑝)𝐼ℎ̅(𝑡) − 𝜋𝑓𝐼ℎ̅(𝑡), 

𝑑𝐼𝑠̅𝑐(𝑡)

𝑑𝑡
 = 𝑝𝐼ℎ̅ − 𝜎𝐼𝑠̅𝑐(𝑡) − 𝛿𝐼𝑠̅𝑐(𝑡) − 𝜋𝑓𝐼𝑠̅𝑐(𝑡), 

𝑑𝐶̅(𝑡)

𝑑𝑡
   = 𝛿𝐼𝑠̅𝑐(𝑡) + θ(1 − 𝑝)𝐼ℎ̅(𝑡) − 𝛾𝐶̅(𝑡) 

                    −𝜋𝑓𝐶̅(𝑡), 

𝑑𝑅̅𝑓(𝑡)

𝑑𝑡
 = 𝜎𝐼𝑠̅𝑐(𝑡) − 𝜋𝑓𝑅̅𝑓(𝑡) − 𝛼𝑅̅𝑓(𝑡), 

𝑑𝑆̅𝑚(𝑡)

𝑑𝑡
 = 𝜋𝑚 − 𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝑆̅𝑚(𝑡) − 𝜋𝑚𝑆̅𝑚(𝑡) 

                    +𝛼𝑅̅𝑚(𝑡), 
𝑑𝐽(̅𝑡)

𝑑𝑡
    = 𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝑆̅𝑚(𝑡) − 𝜁𝐽(̅𝑡) − 𝜋𝑚𝐽(̅𝑡), 

𝑑𝑅̅𝑚(𝑡)

𝑑𝑡
 = 𝜁𝐽(̅𝑡) − 𝜋𝑚𝑅̅𝑚(𝑡) − 𝛼𝑅̅𝑚(𝑡). 

Providing control in the form of vaccination as 
primary prevention is carried out in susceptible 
populations to prevent the occurrence of HPV 
infection. Meanwhile, secondary prevention in 
the form of screening was done as an early effort 
to find out the presence of abnormal cells that 
can cause cervical cancer. The formulation model 
of cervical cancer transmission with controls in 
the form of vaccination (𝑢1) and screening (𝑢2) 
is presented as follows.  

𝑑𝑆̅𝑓(𝑡)

𝑑𝑡
 = 𝜋𝑓 − 𝑢1(𝑡)𝑆̅𝑓(𝑡) − 𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑆̅𝑓(𝑡) 

                   −𝜋𝑓𝑆̅𝑓(𝑡) + 𝛼𝑅̅𝑓(𝑡), 

𝑑𝑉̅(𝑡)

𝑑𝑡
  = 𝑢1(𝑡)𝑆̅𝑓(𝑡) − (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑉̅(𝑡) 

                   −𝜋𝑓𝑉̅(𝑡), 

𝑑𝐼ℎ̅(𝑡)

𝑑𝑡
 = 𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑆̅𝑓(𝑡) + (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑉̅(𝑡) 

        −𝑢2(𝑡)𝐼ℎ̅(𝑡) − 𝜃(1 − 𝑢2(𝑡))𝐼ℎ̅(𝑡) − 𝜋𝑓𝐼ℎ̅(𝑡), 

𝑑𝐼𝑠̅𝑐(𝑡)

𝑑𝑡
 = 𝑢2(𝑡)𝐼ℎ̅ − 𝜎𝐼𝑠̅𝑐(𝑡) − 𝛿𝐼𝑠̅𝑐(𝑡) 

                   −𝜋𝑓𝐼𝑠̅𝑐(𝑡), 

𝑑𝐶̅(𝑡)

𝑑𝑡
   = 𝛿𝐼𝑠̅𝑐(𝑡) + θ(1 − 𝑢2(𝑡))𝐼ℎ̅(𝑡) − 𝛾𝐶̅(𝑡) 

                  −𝜋𝑓𝐶̅(𝑡), 

𝑑𝑅̅𝑓(𝑡)

𝑑𝑡
 = 𝜎𝐼𝑠̅𝑐(𝑡) − 𝜋𝑓𝑅̅𝑓(𝑡) − 𝛼𝑅̅𝑓(𝑡), 

𝑑𝑆̅𝑚(𝑡)

𝑑𝑡
 = 𝜋𝑚 − 𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝑆̅𝑚(𝑡) − 𝜋𝑚𝑆̅𝑚(𝑡) 

                  +𝛼𝑅̅𝑚(𝑡), 
𝑑𝐽(̅𝑡)

𝑑𝑡
    = 𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝑆̅𝑚(𝑡) − 𝜁𝐽(̅𝑡) − 𝜋𝑚𝐽(̅𝑡), 

𝑑𝑅̅𝑚(𝑡)

𝑑𝑡
 = 𝜁𝐽(̅𝑡) − 𝜋𝑚𝑅̅𝑚(𝑡) − 𝛼𝑅̅𝑚(𝑡). 

Objective Functional 
The aim of optimal control in this study was 

to minimize the number of populations infected 
with HPV and cervical cancer, as well as to 
minimize the control costs, namely 

𝑍[𝑢1, 𝑢2 ] = ∫[𝐼ℎ + 𝐽 + 𝐶 + 𝑤1𝑢1
2(𝑡) + 𝑤2𝑢2

2(𝑡)]𝑑𝑡.

𝑇

0

 

𝑤1  is the weight of control costs in the form of 
vaccines with 𝑢1

2(𝑡) indicates the level of 
vaccination cost. 𝑤2  is the weight of control costs 
in the form of screening with 𝑢2

2(𝑡) indicates the 

(2) 
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(6) 

(7) 

(5) 

level of screening cost. Vaccination was given to 
susceptible female populations, while screening 
was carried out by populations of females 
infected with HPV with the appearance of several 
symptoms. Based on equation (4), we will look 
for 𝑢1

∗ , 𝑢2
∗  which results in minimizing the 

objective functional value that is 

𝑍[𝑢1
∗ , 𝑢2

∗  ] = min {𝑍[𝑢1, 𝑢2 ]|𝑢1, 𝑢2𝜖𝕍} 
 
with  

𝕍 = {(𝑢1(𝑡), 𝑢2(𝑡)): 0 ≤ 𝑢1(𝑡) ≤ 1,0 ≤ 𝑢2(𝑡) ≤ 1}.   

Hamiltonian Function 
Based on the objective functional (4) and the 

constraints on the equation (3) to get the optimal 
system, the Hamiltonian function is formed as 
follows.  

𝐻 = 𝐼ℎ + 𝐽 + 𝐶 + 𝑤1𝑢1
2(𝑡) + 𝑤2𝑢2

2(𝑡) 
+𝜆𝑆̅𝑓

(𝜋𝑓 − 𝑢1(𝑡)𝑆̅𝑓(𝑡) − 𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑆̅𝑓(𝑡) − 𝜋𝑓𝑆̅𝑓(𝑡) 

          +𝛼𝑅̅𝑓(𝑡)) 

+𝜆𝑉 (𝑢1(𝑡)𝑆̅𝑓(𝑡) − (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑉̅(𝑡) − 𝜋𝑓𝑉̅(𝑡)) 

+𝜆𝐼ℎ̅
(𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑆̅𝑓(𝑡) + (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑉̅(𝑡) 

           −𝑢2(𝑡)𝐼ℎ̅(𝑡) − 𝜃(1 − 𝑢2(𝑡))𝐼ℎ̅(𝑡) − 𝜋𝑓𝐼ℎ̅(𝑡)) 

+𝜆𝐼𝑠̅𝑐
(𝑢2(𝑡)𝐼ℎ̅ − 𝜎𝐼𝑠̅𝑐(𝑡) − 𝛿𝐼𝑠̅𝑐(𝑡) − 𝜋𝑓𝐼𝑠̅𝑐(𝑡)) 

+𝜆𝐶̅ (𝛿𝐼𝑠̅𝑐(𝑡) + θ(1 − 𝑢2(𝑡))𝐼ℎ̅(𝑡) − 𝛾𝐶̅(𝑡) − 𝜋𝑓𝐶̅(𝑡)) 

+𝜆𝑅̅𝑓
(𝜎𝐼𝑠̅𝑐(𝑡) − 𝜋𝑓𝑅̅𝑓(𝑡) − 𝛼𝑅̅𝑓(𝑡)) 

+𝜆𝑆̅𝑚
(𝜋𝑚 − 𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝑆̅𝑚(𝑡) − 𝜋𝑚𝑆̅𝑚(𝑡) + 𝛼𝑅̅𝑚(𝑡)) 

+𝜆𝐽̅ (𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝑆̅𝑚(𝑡) − 𝜁𝐽(̅𝑡) − 𝜋𝑚𝐽(̅𝑡)) 

+𝜆𝑅̅𝑚
(𝜁𝐽(̅𝑡) − 𝜋𝑚𝑅̅𝑚(𝑡) − 𝛼𝑅̅𝑚(𝑡)). 

The Hamilton function reaches an optimal 
solution if the state equation, adjoint equation, 
and stationary conditions are fulfilled. 

State Equations 
The state equation for optimal control 

problems (4) with constraints (3) was obtained by 
differentiating the Hamiltonian function (5) with 
respect to each adjoint variable as follows.  

𝑑𝑆̅𝑓

𝑑𝑡
=

𝜕𝐻

𝑑𝜆𝑆̅𝑓

= 𝜋𝑓 − 𝑢1(𝑡)𝑆̅𝑓(𝑡) − 𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑆̅𝑓(𝑡) 

                           −𝜋𝑓𝑆̅𝑓(𝑡) + 𝛼𝑅̅𝑓(𝑡), 

𝑑𝑉̅

𝑑𝑡
=

𝜕𝐻

𝑑𝜆𝑉

= 𝑢1(𝑡)𝑆̅𝑓(𝑡) − (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑉̅(𝑡) 

                          −𝜋𝑓𝑉̅(𝑡), 

𝑑𝐼ℎ̅
𝑑𝑡

=
𝜕𝐻

𝑑𝜆𝐼ℎ̅

= 𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑆̅𝑓(𝑡) + (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝑉̅(𝑡) 

        −𝑢2(𝑡)𝐼ℎ̅(𝑡) − 𝜃(1 − 𝑢2(𝑡))𝐼ℎ̅(𝑡) − 𝜋𝑓𝐼ℎ̅(𝑡), 

𝑑𝐼𝑠̅𝑐
𝑑𝑡

=
𝜕𝐻

𝑑𝜆𝐼𝑠̅𝑐

= 𝑢2(𝑡)𝐼ℎ̅ − 𝜎𝐼𝑠̅𝑐(𝑡) − 𝛿𝐼𝑠̅𝑐(𝑡) 

                            −𝜋𝑓𝐼𝑠̅𝑐(𝑡), 

𝑑𝐶̅

𝑑𝑡
=

𝜕𝐻

𝑑𝜆𝐶̅
= 𝛿𝐼𝑠̅𝑐(𝑡) + θ(1 − 𝑢2(𝑡))𝐼ℎ̅(𝑡) 

                          −𝛾𝐶̅(𝑡) − 𝜋𝑓𝐶̅(𝑡), 

𝑑𝑅̅𝑓

𝑑𝑡
=

𝜕𝐻

𝑑𝜆𝑅̅𝑓

= 𝜎𝐼𝑠̅𝑐(𝑡) − 𝜋𝑓𝑅̅𝑓(𝑡) − 𝛼𝑅̅𝑓(𝑡), 

𝑑𝑆̅𝑚

𝑑𝑡
=

𝜕𝐻

𝑑𝜆𝑆̅𝑚

= 𝜋𝑚 − 𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝑆̅𝑚(𝑡) 

                             −𝜋𝑚𝑆̅𝑚(𝑡) + 𝛼𝑅̅𝑚(𝑡), 
𝑑𝐽̅

𝑑𝑡
=

𝜕𝐻

𝑑𝜆𝐽̅
= 𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝑆̅𝑚(𝑡) − 𝜁𝐽(̅𝑡) − 𝜋𝑚𝐽(̅𝑡), 

𝑑𝑅̅𝑚

𝑑𝑡
=

𝜕𝐻

𝑑𝜆𝑅̅𝑚

= 𝜁𝐽(̅𝑡) − 𝜋𝑚𝑅̅𝑚(𝑡) − 𝛼𝑅̅𝑚(𝑡), 

with initial condition  𝑆̅𝑓(0) = 𝑆̅𝑓0
, 𝑉̅(0) = 𝑉̅0, 

𝐼ℎ̅(0) = 𝐼ℎ̅0
, 𝐼𝑠̅𝑐(0) = 𝐼𝑠̅𝑐0

, 𝐶̅(0) = 𝐶̅0, 𝑅̅𝑓(0) = 𝑅̅𝑓0
, 

𝑆̅𝑚(0) = 𝑆̅𝑚0
, 𝐽(̅0) = 𝐽0̅, 𝑅̅𝑚(0) = 𝑅̅𝑚0

.  

Adjoint Equations 
The adjoint equation for the optimal control 

problem (4) with the constraint (3) was obtained 
by differentiating the Hamiltonian function (5) 
with respect to each state variable as follows.  

𝑑𝜆𝑆̅𝑓

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆̅𝑓

= (𝑢1(𝑡) + 𝑐𝑓𝛽𝑚𝐽(̅𝑡) + 𝜋𝑓)𝜆𝑆̅𝑓

− 𝑢1(𝑡)𝜆𝑉 − 𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝜆𝐼ℎ̅
, 

𝑑𝜆𝑉

𝑑𝑡
= −

𝜕𝐻

𝜕𝑉̅
= (𝜋𝑓 + (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)) 𝜆𝑉

− (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽(̅𝑡)𝜆𝐼ℎ̅
, 

𝑑𝜆𝐼ℎ̅

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼ℎ̅
= −1 + (𝑢2(𝑡) + θ(1 − 𝑢2(𝑡)) + 𝜋𝑓)𝜆𝐼ℎ̅

 

                               −𝑢2(𝑡)𝜆𝐼𝑠̅𝑐
− θ(1 − 𝑢2(𝑡))𝜆𝐶̅ 

                              +𝑐𝑚𝛽𝑓𝑆̅𝑚(𝑡)𝜆𝑆̅𝑚
− 𝑐𝑚𝛽𝑓𝑆̅𝑚(𝑡)𝜆𝐽̅, 

𝑑𝜆𝐼𝑠̅𝑐

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼𝑠̅𝑐
= (𝜎 + 𝛿 + 𝜋𝑓)𝜆𝐼𝑠̅𝑐

− 𝛿𝜆𝐶̅ − 𝜎𝜆𝑅̅𝑓
, 

𝑑𝜆𝐶̅

𝑑𝑡
= −

𝜕𝐻

𝜕𝐶̅
= −1 + (𝜋𝑓 + 𝛾)𝜆𝐶̅ , 

𝑑𝜆𝑅̅𝑓

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅̅𝑓

= 𝜋𝑓𝜆𝑅̅𝑓
− 𝛼𝜆𝑆̅𝑓

+ 𝛼𝜆𝑅̅𝑓
, 

𝑑𝜆𝑆̅𝑚

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆̅𝑚

= (𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡) + 𝜋𝑚)𝜆𝑆̅𝑚
− 𝑐𝑚𝛽𝑓𝐼ℎ̅(𝑡)𝜆𝐽̅, 

𝑑𝜆𝐽̅

𝑑𝑡
= −

𝜕𝐻

𝜕𝐽̅
= −1 + 𝑐𝑓𝛽𝑚𝑆̅𝑓(𝑡)𝜆𝑆̅𝑓

 

                            +(1 − 𝜀)𝑐𝑓𝛽𝑚𝑉̅(𝑡)𝜆𝑉 

                            − (𝑐𝑓𝛽𝑚𝑆̅𝑓(𝑡) + (1 − 𝜀)𝑐𝑓𝛽𝑚𝑉̅(𝑡)) 𝜆𝐼ℎ̅
 

                            +(𝜁 + 𝜋𝑚)𝜆𝐽̅ − 𝜁𝜆𝑅̅𝑚
, 

𝑑𝜆𝑅̅𝑚

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅̅𝑚

= 𝜋𝑚𝜆𝑅̅𝑚
− 𝛼𝜆𝑆̅𝑚

+ 𝛼𝜆𝑅̅𝑚
, 
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with transversality conditions 𝜆𝑆̅𝑓
(𝑇) = 𝜆𝑉(𝑇) =

𝜆𝐼ℎ̅
(𝑇) = 𝜆𝐼𝑠̅𝑐

(𝑇) = 𝜆𝐶̅(𝑇) = 𝜆𝑅̅𝑓
(𝑇) = 𝜆𝑆̅𝑚

(𝑇) =

𝜆𝐽̅(𝑇) = 𝜆𝑅̅𝑚
(𝑇) = 0. 

 
Stationer Conditions 

Stationer conditions for optimal control 
problems (4) with constraints (3) was obtained by 
differentiating the Hamiltonian function (5) 
toward variables 𝑢1, 𝑢2 as follows. 

𝜕𝐻

𝜕𝑢1

= 2𝑤1𝑢1(𝑡) − 𝑆̅𝑓(𝑡)𝜆𝑆̅𝑓
+ 𝑆̅𝑓(𝑡)𝜆𝑉 = 0, 

𝑢1
∗(𝑡) =

(𝜆𝑆̅𝑓
− 𝜆𝑉)𝑆̅𝑓

∗(𝑡)

2𝑤1

, 

𝜕𝐻

𝜕𝑢2

= 2𝑤2𝑢2(𝑡) − 𝐼ℎ̅(𝑡)𝜆𝐼ℎ̅
+ θ𝐼ℎ̅(𝑡)𝜆𝐼ℎ̅

 

            +𝐼ℎ̅(𝑡)𝜆𝐼𝑠̅𝑐
− θ𝐼ℎ̅(𝑡)𝜆𝐶̅ = 0, 

𝑢2
∗(𝑡) =

(𝜆𝐼ℎ̅
− 𝜆𝐼𝑠̅𝑐

)𝐼ℎ̅
∗(𝑡) + (𝜆𝐶̅ − 𝜆𝐼ℎ̅

)θ𝐼ℎ̅
∗(𝑡)

2𝑤2

. 

Given that 0 ≤ 𝑢1(𝑡) ≤ 1 and 0 ≤ 𝑢2(𝑡) ≤ 1, 
thus we get the equation as follows. 

𝑢1
∗(𝑡) = {

 0,                         𝑢1(𝑡) ≤ 0,
𝑢1(𝑡), 0 < 𝑢1(𝑡) < 1,
      1,                    𝑢1(𝑡) ≥ 1.

 

𝑢2
∗(𝑡) = {

 0,                         𝑢2(𝑡) ≤ 0,
𝑢2(𝑡), 0 < 𝑢2(𝑡) < 1,
      1,                    𝑢2(𝑡) ≥ 1.

 

 
In compact notation,  

𝑢1
∗(𝑡) = min{max [0,

(𝜆𝑆𝑓̅
− 𝜆𝑉̅)𝑆𝑓̅

∗(𝑡)

2𝑤1
] , 1}, 

𝑢2
∗(𝑡) = min {max [0,

(𝜆𝐼ℎ̅
− 𝜆𝐼𝑠̅𝑐

)𝐼ℎ̅
∗(𝑡) + (𝜆𝐶̅ − 𝜆𝐼ℎ̅

)θ𝐼ℎ̅
∗(𝑡)

2𝑤2

] , 1} 

 

Optimal  Solution 
The optimal solution was obtained by 

substituting the optimal control 𝑢⃗ ∗  to the system 
of state equations (6) and adjoint equations (7) 
so that the equation system was obtained as 
follows. 

𝑑𝑆̅𝑓
∗(𝑡)

𝑑𝑡
= 𝜋𝑓 − 𝑢1

∗(𝑡)𝑆̅𝑓
∗(𝑡) − 𝑐𝑓𝛽𝑚𝐽∗̅(𝑡)𝑆̅𝑓

∗(𝑡) 

                 −𝜋𝑓𝑆̅𝑓
∗(𝑡) + 𝛼𝑅̅𝑓

∗(𝑡), 

𝑑𝑉̅∗(𝑡)

𝑑𝑡
= 𝑢1

∗(𝑡)𝑆̅𝑓
∗(𝑡) − (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽∗̅(𝑡)𝑉̅∗(𝑡) 

                   −𝜋𝑓𝑉̅
∗(𝑡), 

𝑑𝐼ℎ̅
∗(𝑡)

𝑑𝑡
 = 𝑐𝑓𝛽𝑚𝐽∗̅(𝑡)𝑆̅𝑓

∗(𝑡) + (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽∗̅(𝑡)𝑉̅∗(𝑡) 

                 −𝑢2
∗(𝑡)𝐼ℎ̅

∗(𝑡) − 𝜃(1 − 𝑢2
∗(𝑡))𝐼ℎ̅

∗(𝑡) 

− 𝜋𝑓𝐼ℎ̅
∗(𝑡), 

𝑑𝐼𝑠̅𝑐
∗ (𝑡)

𝑑𝑡
  = 𝑢2

∗(𝑡)𝐼ℎ̅
∗ − 𝜎𝐼𝑠̅𝑐

∗ (𝑡) − 𝛿𝐼𝑠̅𝑐
∗ (𝑡) − 𝜋𝑓𝐼𝑠̅𝑐

∗ (𝑡), 

𝑑𝐶̅∗(𝑡)

𝑑𝑡
  = 𝛿𝐼𝑠̅𝑐

∗ (𝑡) + θ(1 − 𝑢2
∗(𝑡))𝐼ℎ̅

∗(𝑡) 

                    −𝛾𝐶̅∗(𝑡) − 𝜋𝑓𝐶̅
∗(𝑡), 

𝑑𝑅̅𝑓
∗(𝑡)

𝑑𝑡
  = 𝜎𝐼𝑠̅𝑐

∗ (𝑡) − 𝜋𝑓𝑅̅𝑓
∗(𝑡) − 𝛼𝑅̅𝑓

∗(𝑡), 

𝑑𝑆̅𝑚
∗ (𝑡)

𝑑𝑡
 = 𝜋𝑚 − 𝑐𝑚𝛽𝑓𝐼ℎ̅

∗(𝑡)𝑆̅𝑚
∗ (𝑡) − 𝜋𝑚𝑆̅𝑚

∗ (𝑡) 

                    +𝛼𝑅̅𝑚
∗ (𝑡), 

𝑑𝐽∗̅(𝑡)

𝑑𝑡
   = 𝑐𝑚𝛽𝑓𝐼ℎ̅

∗(𝑡)𝑆̅𝑚
∗ (𝑡) − 𝜁𝐽∗̅(𝑡) − 𝜋𝑚𝐽∗̅(𝑡), 

𝑑𝑅̅𝑚
∗ (𝑡)

𝑑𝑡
 = 𝜁𝐽∗̅(𝑡) − 𝜋𝑚𝑅̅𝑚

∗ (𝑡) − 𝛼𝑅̅𝑚
∗ (𝑡), 

𝑑𝜆𝑆̅𝑓

𝑑𝑡
      = (𝑢1

∗(𝑡) + 𝑐𝑓𝛽𝑚𝐽∗̅(𝑡) + 𝜋𝑓)𝜆𝑆̅𝑓
 

                     −𝑢1
∗(𝑡)𝜆𝑉̅ − 𝑐𝑓𝛽𝑚𝐽∗̅(𝑡)𝜆𝐼ℎ̅

, 
𝑑𝜆𝑉

𝑑𝑡
       = (𝜋𝑓 + (1 − 𝜀)𝑐𝑓𝛽𝑚𝐽∗̅(𝑡)) 𝜆𝑉 

                     −(1 − 𝜀)𝑐𝑓𝛽𝑚𝐽∗̅(𝑡)𝜆𝐼ℎ̅
, 

𝑑𝜆𝐼ℎ̅

𝑑𝑡
      = −1 + (𝑢2

∗(𝑡) + θ(1 − 𝑢2
∗(𝑡)) + 𝜋𝑓)𝜆𝐼ℎ̅

 

                    −𝑢2
∗(𝑡)𝜆𝐼𝑠̅𝑐

− θ(1 − 𝑢2
∗(𝑡))𝜆𝐶̅ 

                    +𝑐𝑚𝛽𝑓𝑆̅𝑚
∗ (𝑡)𝜆𝑆̅𝑚

− 𝑐𝑚𝛽𝑓𝑆̅𝑚
∗ (𝑡)𝜆𝐽̅, 

𝑑𝜆𝐼𝑠̅𝑐

𝑑𝑡
     = (𝜎 + 𝛿 + 𝜋𝑓)𝜆𝐼𝑠̅𝑐

− 𝛿𝜆𝐶̅ − 𝜎𝜆𝑅̅𝑓
, 

𝑑𝜆𝐶̅

𝑑𝑡
       = −1 + (𝜋𝑓 + 𝛾)𝜆𝐶̅ , 

𝑑𝜆𝑅̅𝑓

𝑑𝑡
     = 𝜋𝑓𝜆𝑅̅𝑓

− 𝛼𝜆𝑆̅𝑓
+ 𝛼𝜆𝑅̅𝑓

, 

𝑑𝜆𝑆̅𝑚

𝑑𝑡
    = (𝑐𝑚𝛽𝑓𝐼ℎ̅

∗(𝑡) + 𝜋𝑚)𝜆𝑆̅𝑚
− 𝑐𝑚𝛽𝑓𝐼ℎ̅

∗(𝑡)𝜆𝐽 ̅, 

𝑑𝜆𝐽̅

𝑑𝑡
       = −1 + 𝑐𝑓𝛽𝑚𝑆̅𝑓

∗(𝑡)𝜆𝑆̅𝑓
+ (1 − 𝜀)𝑐𝑓𝛽𝑚𝑉̅∗(𝑡)𝜆𝑉̅ 

                   − (𝑐𝑓𝛽𝑚𝑆̅𝑓
∗(𝑡)

+ (1 − 𝜀)𝑐𝑓𝛽𝑚𝑉̅∗(𝑡)) 𝜆𝐼ℎ̅
 

                    +(𝜁 + 𝜋𝑚)𝜆𝐽̅ − 𝜁𝜆𝑅̅𝑚
, 

  
𝑑𝜆𝑅̅𝑚

𝑑𝑡
  = 𝜋𝑚𝜆𝑅̅𝑚

− 𝛼𝜆𝑆̅𝑚
+ 𝛼𝜆𝑅̅𝑚

, 

with boundary conditions 𝑆̅𝑓(0) = 𝑆̅𝑓0
, 𝑉̅(0) =

𝑉̅0, 
𝐼ℎ̅(0) = 𝐼ℎ̅0

, 𝐼𝑠̅𝑐(0) = 𝐼𝑠̅𝑐0
, 𝐶̅(0) = 𝐶̅0, 𝑅̅𝑓(0) = 𝑅̅𝑓0

, 

𝑆̅𝑚(0) = 𝑆̅𝑚0
, 𝐽(̅0) = 𝐽0̅, 𝑅̅𝑚(0) = 𝑅̅𝑚0

, 𝜆𝑆̅𝑓
(𝑇) = 

𝜆𝑉(𝑇) = 𝜆𝐼ℎ̅
(𝑇) = 𝜆𝐼𝑠̅𝑐

(𝑇) = 𝜆𝐶̅(𝑇) = 𝜆𝑅̅𝑓
(𝑇) = 

𝜆𝑆̅𝑚
(𝑇) = 𝜆𝐽̅(𝑇) = 𝜆𝑅̅𝑚

(𝑇) = 0. 

Numerical method and simulations 
Numerical simulations are conducted by using 

initial value S̅f(0) = 0.3, V̅(0) = 0.2, I̅h(0) = 
0.1, 𝐼𝑠̅𝑐(0) = 0.1, 𝐶̅(0) = 0.2, 𝑅̅𝑓(0) =

0.1, 𝑆̅𝑚(0) = 𝑆̅𝑚(0) = 0.5, 𝐽(̅0) = 0.3, 𝑅̅𝑚(0) =
0.2.  
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The simulation result with and without control 
is presented in Figure 2. The graph solution is 
shown with the weight values of controls 𝑤1 =
0.5, 𝑤2 = 0.2, and parameter values, as 
presented in Table 1. Based on Figure 2, giving a 
combination of vaccination and screening control 
have a positive effect on the spread of HPV 
infection. It appears that the combination of 
controls can reduce the spread of HPV infection. It 
can be seen by decreasing the number of 

subpopulations of females infected with HPV. 
Before being given control, the number of females 
infected with HVP is increased. However, after 
being given control, the number of infected 
females decreases very significantly. It also results 
in a decreasing number of cervical cancers. 
Meanwhile, the combination of controls also has 
an impact on male subpopulation. These controls 
are also able to reduce the infected male 
subpopulation. 

 

 

 

Figure 2. The behavior of cervical cancer model for 𝑡𝜖[0,20] 

Table 1. Parameter values 

Parameter Description Value References 

𝜋𝑓(𝜋𝑚) Number of recruitment rate of a sexually-
active subpopulation of female (male) 

0.5 assumed 

𝜇𝑓(𝜇𝑚) The death rate of the subpopulation of 
female (male) 

0.1 assumed 

𝛽𝑓(𝛽𝑚) Probability of transfer infection from 
females to males (males to females) 

0.7 [6] 

𝑐𝑓(𝑐𝑚) The average number of sexual contacts of 
female for males (male for females) 

2 [6] 

𝜙 Vaccination rate 0 assumed 
𝜀 Efficacy vaccines 0.8 [6] 
𝑝 Screening rate 0 assumed 
𝜃 Probability of infected males with HPV can 

be infected with cervical cancer 
0.1 assumed 

𝜎 The recovery rate of females infected 0.2 assumed 
𝜁 The recovery rate of males infected 0.4 assumed 
𝛿 Probability of screening females can be 

infected with cervical cancer 
0.05 assumed 

𝛾 Cervical cancer-induced mortality rate in 
females 

0.01 assumed 

𝛼 The rate of immune loss 0.5 assumed 
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Furthermore, Figure 3 shows the control 
profile in the form of vaccination and screening. 
Both of them were used in reducing the number 
of infected female subpopulations and the 
infected male subpopulations, as well as the 
number of cervical cancers. It appears that the 
vaccination control given is lower than the 
screening control. It can be influenced by the 
ability of vaccination given, which has enough 
impact to reduce the number of infected 
subpopulations. Meanwhile, screening control 
must be given in a higher dose to effectively help 
in suppressing the occurrence of infection. 

 
 
Figure 3. The control profile of cervical cancer 

model 

CONCLUSION 

In this study, optimal control of the 
cervical cancer model has been carried out. 
Two controls were used in this model, 
namely vaccination and screening. Based on 
the results of the study, the provision of 
these two controls has a positive impact as it 
can reduce the number of infected 
subpopulations, both in the subpopulation 
of infected females and in the subpopulation 
of infected males. In addition, the 
administration of this control also leads to a 
reduced rate of cervical cancer in the female 
population. 
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