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Abstract 
This paper is aimed to develop a new COVID-19 mathematical model involving viruses in the environment. In this 
mathematical model, the human population is divided into five subpopulations: susceptible, exposed, infected, 
hospitalized, and cured individuals. In addition, the model also contains the virus population in the environment. 
Infection in the model occurs due to interactions between susceptible individual subpopulations and infected 
individuals and hospitalizations, as well as the spread of the virus in the environment. Based on the results of 
dynamic analysis, this model has two equilibrium points, the disease-free and endemic equilibrium points. The 
disease-free equilibrium point always exists, and both equilibrium points are locally asymptotically stable if they 
meet the Routh-Hurwitz criteria. Model sensitivity analysis was carried out on model parameters that affect the 
basic reproduction number with the most sensitive parameters are the natural death rate, the recruitment rate, the 
transmission rate of the virus in the environment, the virus clearance rate, and the rate of wearing PPE (Personal 
Protective Equipment), as well as the parameter that does not affect the basic reproduction number that is the rate 
of leaving the recovered population. Numerical simulations performed show results in accordance with the analysis, 
also from the simulations can be concluded that the increase (or decrease) of the transmission rate of the virus in 
an environment that has a higher sensitivity index has more significant influences on the basic reproduction number 
and the number of infected population than the transmission rate of hospitalized individuals. 

Keywords: Basic Reproduction Number, Dynamics Analysis, Epidemic Models of COVID-19, Local Stability Analysis, 
Sensitivity Analysis. 

 
INTRODUCTION 

Coronavirus is an infectious disease called 
acute respiratory syndrome by the 
International Virus Taxonomy community. In 
general, the coronavirus is known as COVID-19. 
This disease is transmitted through direct 
contact such as touch, body fluids, or air when 
sneezing or coughing [1]. Researchers are still 
tracking the spread of COVID-19 in all parts of 
the world. To describe the dynamics of the 
spread of the virus in a population, a 
mathematical model is needed so that the 
solutions can be obtained in handling the 
spread of the virus. 

Mathematical modeling is a field of 
mathematics that describes real-world 
problems in mathematical statements. The 
COVID-19 model is an epidemic model where 
the model is used to describe the infectious 
disease COVID-19. The COVID-19 epidemic 
model has been studied by several researchers. 
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Researchers [2-5] developed a model of three 
SIR subpopulations. Then Victor [6] developed 
this model by adding a subpopulation of 
exposed individuals (𝐸) and the assumption 
that subpopulations of individuals who 
recovered could be susceptible again (𝑅). Zeb 
et al. [7] also developed the previous model 
researched [2,4] by adding a subpopulation of 
exposed individuals (𝐸) and isolated individual 
subpopulations (Q) to the model. 

Naik et al. [8] modeled the effect of COVID-
19 transmission on contaminated environments 
in India using seven subpopulations, namely 
susceptible (𝑆), exposed (𝐸), asymptomatic 
infected (𝐴), infected with symptoms (𝐼), 
confirmed (𝐶), hospitalized (𝐻), and recovered 
(𝑅) with the virus population in the 
environment (𝑉). The intended population is a 
combined population that interacts 
homogeneously where each individual interacts 
directly, without isolation or quarantine, and 
without closing access to a particular area. 

Masandawa et al. [9] presented a COVID-19 
model consisting of five subpopulations 
namely, susceptible (𝑆), exposed (𝐸), infected 
(𝐼), hospitalized (𝐻), and recovered (𝑅). This 
model assumes that individuals who have 
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recovered have the possibility to become 
vulnerable again. 

This paper will constructed a mathematical 
model for COVID-19 by modifying Masandawa 
et al. [9] model by adding the virus 
compartment in the environment as in Naik et 
al. [8]. It is done to determine the virus's 
behavior in the environment with the 
constructed model. Then the dynamic analysis 
of the model is applied by determining the 
equilibrium point and analyzing its stability. In 
the final part, a numerical simulation is carried 
out to describe the results of dynamic analysis 
using the fourth-order Runge-Kutta method. 

MATERIALS AND METHOD 
Model Formulation 

In this paper, the COVID-19 epidemic model 
[9] is the main object of the study. The model 
construction is done by modifying the model of 
Masandawa et al. [9] by adding the virus 
compartment, such as in the model of Naik et 
al. [8]. 

Determination of the Equilibrium Points 
The first step to be done in dynamics 

analysis is to determine the equilibrium points. 
The equilibrium points of the model are 
obtained when the population rate of the 
system is unchanged or equal to zero. From this 
condition, the existence properties of 
equilibrium points are also obtained. 

Stability of the Equilibrium Points 
The local stability of equilibrium points is 

analyzed by linearizing the model using the 
Taylor series. The linearization is done to 
change the nonlinear model into its linear form. 

The approximation used is in the form of a 
Jacobian matrix. From there, we can determine 
the eigenvalues or roots of the characteristics 
equation. The local stability determination is 
obtained from the absolute of its eigenvalue 
argument. 

Sensitivity Analysis 
The sensitivity analysis is done to determine 

the parameter that mainly affects the spread of 
the disease. In this stage, the study calculates 
the sensitivity index of each model parameter 
that correlates with the basic reproduction 
number, ℛ0. 

Numerical Simulation 
The numerical simulation is used to verify 

the analytical results and illustrate the model's 
behavior. The approach used is the fourth-
order Runge-Kutta method using MATLAB 
software. In this stage, it is crucial to determine 
the parameters that match the condition of 
existences and stability of equilibrium points. 
The interpretation results of numerical 
simulations are done as the last step in this 
stage. 

RESULTS AND DISCUSSION 
The COVID-19 Model Construction 

This section will give a mathematical model 
of the COVID-19 epidemic involving viruses in 
the environment. The epidemic model used as 
a reference is the Masandawa et al. [9] 
epidemic model involving viruses in the 
environment, as referred to by Naik et al. [8]. 
The compartment diagram for the COVID-19 
epidemic model involving viruses in the 
environment is shown in Figure 1. 

 

Figure 1. The COVID-19 epidemic model involving viruses in the environment 
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The assumptions used in the mathematical 
model are as follows: 1) individuals who have 
recovered will be susceptible again, 2) the virus 
population in the environment (𝑉) is spread by 
infected (𝐼) and hospitalized individuals (𝐻), 3) 
susceptible individuals will be infected with the 
virus by interacting with infected and 
hospitalized individuals as well as interactions 
with viruses in the environment, 4) interactions 
between susceptible and hospitalized 
individuals occur when susceptible individuals 
are in the hospital, and 5) there are significant 
influences in the use of personal protective 
equipment (PPE) to prevent the spread of the 
virus. 

The COVID-19 epidemic model involving 
virus in the environment consists of five groups 
of human subpopulations; susceptible (𝑆), 
exposed (𝐸), infected (𝐼), hospitalized (𝐻), 
and recovered (𝑅) subpopulations, also the 
virus population in the environment (𝑉). The 
COVID-19 epidemic model involving virus in the 
environment is given by the following equation. 
The parameter description can be seen in Table 
1. 
𝑑𝑆

𝑑𝑡
= Λ + 𝜌𝑅 − (𝜇 + 𝛽𝑉𝑉 + (1 − 𝜃)(𝛽𝐼𝐼 + 𝛽𝐻𝐻))𝑆 

𝑑𝐸

𝑑𝑡
= (𝛽𝑉𝑉 + (1 − 𝜃)(𝛽𝐼𝐼 + 𝛽𝐻𝐻))𝑆 − (𝛼 + 𝜖 + 𝜇)𝐸 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝑟𝐼 + 𝜈 + 𝑑 + 𝜇)𝐼 

𝑑𝐻

𝑑𝑡
= 𝜖𝐸 + 𝜈𝐼 − (𝑟𝐻 + 𝑑 + 𝜇)𝐻 

(1) 

𝑑𝑅

𝑑𝑡
= 𝑟𝐼𝐼 + 𝑟𝐻𝐻 − (𝜌 + 𝜇)𝑅 

𝑑𝑉

𝑑𝑡
= 𝛾𝐼𝐼 + 𝛾𝐻𝐻 − 𝜔𝑉 

and  
𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝐻 + 𝑅 

Table 1. Description of all parameters 

Para- 
meter 

Description 

Λ Recruitment rate of susceptible 
𝜇 Natural death rate 
𝜌 Rate of leaving the recovered population 
𝛽𝑉 virus transmission rate in the environment  
𝛽𝐼 Transmission rate of infected individuals 
𝛽𝐻 Transmission rate of hospitalized individuals 
𝜃 The rate of wearing PPE 
𝛼 ‘Exposed individuals become infected’ rate 
𝜖 ‘Exposed individuals are hospitalized’ rate  
𝜈 ‘Infected individuals are hospitalized’ rate 
𝑟𝐼 Recovery rate of infected individuals 
𝑟𝐻 Recovery rate of hospitalized individuals 
𝑑 The disease induced death rate 
𝛾𝐼 Virus released rate via infected individuals 
𝛾𝐻 Virus release rate via the hospitalized 

individuals 
𝜔 The virus clearance rate 

 

Equilibrium points 
The system equilibrium points are obtained 

when 
𝑑𝑆

𝑑𝑡
=
𝑑𝐸

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
=
𝑑𝐻

𝑑𝑡
=
𝑑𝑅

𝑑𝑡
=
𝑑𝑉

𝑑𝑡
= 0, such 

that 

Λ + 𝜌𝑅 − (𝜇 + 𝛽𝑉𝑉 + (1 − 𝜃)(𝛽𝐼𝐼 + 𝛽𝐻𝐻))𝑆 = 0, 

(𝛽𝑉𝑉 + (1 − 𝜃)(𝛽𝐼𝐼 + 𝛽𝐻𝐻))𝑆 − 𝑘1𝐸 = 0, 

𝛼𝐸 − 𝑘2𝐼 = 0, 

(2) 
𝜖𝐸 + 𝜈𝐼 − 𝑘3𝐻 = 0, 
𝑟𝐼𝐼 + 𝑟𝐻𝐻 − 𝑘4𝑅 = 0, 
𝛾𝐼𝐼 + 𝛾𝐻𝐻 − 𝜔𝑉 = 0, 

where  
𝑘1 = 𝛼 + 𝜖 + 𝜇, 
𝑘2 = 𝑟𝐼 + 𝜈 + 𝑑 + 𝜇, 
𝑘3 = 𝑟𝐻 + 𝑑 + 𝜇, 
𝑘4 = 𝜌 + 𝜇. 

 
Disease-free equilibrium  

𝑌0 = (𝑆0, 𝐸0, 𝐼0, 𝐻0, 𝑅0, 𝑉0) = (
Λ

𝜇
, 0,0,0,0,0), 

With assumptions 𝑆 ≠ 0, 𝐸 ≠ 0, 𝐼 ≠ 0,𝐻 ≠ 0, 𝑅 ≠
0, and 𝑉 ≠ 0 ,we get the endemic equilibrium  

𝑌∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗, 𝑉∗) where 

𝑆∗ =
Λ + 𝑎3𝐸

∗

𝜇 + (𝑎4 + 𝑎5)𝐸
∗
 

(3) 

𝐼∗ =
𝛼𝐸∗

𝑘2
 

𝐻∗ =
𝐸∗

𝑘3
(𝜖 +

𝛼𝜈

𝑘2
) 

𝑅∗ =
𝐸∗

𝑘4
(
𝛼𝑟𝐼
𝑘2
+
𝑟𝐻
𝑘3
(𝜖 +

𝛼𝜈

𝑘2
)) 

𝑉∗ =
𝐸∗

𝜔
(
𝛼𝛾𝐼
𝑘2
+
𝛾𝐻
𝑘3
(𝜖 +

𝛼𝜈

𝑘2
)) 

and 

𝑎1 =
𝛼

𝑘2
, 𝑎2 =

1

𝑘3
(𝜖 +

𝛼𝜈

𝑘2
), 

𝑎3 =
𝜌

𝑘4
(𝑎1𝑟𝐼 + 𝑎2𝑟𝐻), 

𝑎4 =
𝛽𝑉
𝜔
(𝛾𝐼𝑎1 + 𝛾𝐻𝑎2), 

𝑎5 = (1 − 𝜃)(𝛽𝐼𝑎1 + 𝛽𝐻𝑎2). 
 

Endemic equilibrium 𝑌∗ exists when 
𝑘1𝜇 > Λ(𝑎4 + 𝑎5) and 𝑎3 > 𝑘1 

or 

𝑘1𝜇 < Λ(𝑎4 + 𝑎5) and 𝑎3 < 𝑘1. 

Basic reproduction number 
The next generation matrix method was 

used to obtain the basic reproduction number 
(ℛ0). The components forming the next 
generation matrix consist of the infected 
population group, i.e 
𝑑𝐸

𝑑𝑡
= (𝛽𝑉𝑉 + (1 − 𝜃)(𝛽𝐼𝐼 + 𝛽𝐻𝐻))𝑆 − 𝑘1𝐸, 

(4) 
𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − 𝑘2𝐼, 
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𝑑𝐻

𝑑𝑡
= 𝜖𝐸 + 𝜈𝐼 − 𝑘3𝐻, 

𝑑𝑉

𝑑𝑡
= 𝛾𝐼𝐼 + 𝛾𝐻𝐻 − 𝜔𝑉. 

to differ new infection, so (4) is changed to 

𝑑𝑥𝑖
𝑑𝑡
= ℱ𝑖(𝑥) − 𝒢𝑖(𝑥), 

Where ℱ𝑖  is the new infection rate, 𝒢𝑖  is the 
transfer of infection between subpopulations 
and 𝑥 are the infected subpopulations such that 
𝑥1 = 𝐸, 𝑥2 = 𝐼, 𝑥3 = 𝐻, 𝑥4 = 𝑉. 

ℱ𝑖 = (

(𝛽𝑉𝑉 + (1 − 𝜃)(𝛽𝐼𝐼 + 𝛽𝐻𝐻))𝑆

0
0
0

), 

𝒢𝑖 = (

𝑘1𝐸
𝑘2𝐼 − 𝛼𝐸

𝑘3𝐻 − 𝜖𝐸 − 𝜈𝐼
𝜔𝑉 − 𝛾𝐼𝐼 − 𝛾𝐻𝐻

). 

The spectral radius of the next generation 
matrix 𝒦 = ℱ𝒢−1 as the basic reproduction 

number ℛ0 and 𝑌0 = (
Λ

𝜇
, 0,0,0,0,0), where, 

ℱ = (
𝜕𝑓𝑖(𝑥𝑖)

𝜕𝑥𝑖
) =

(

 
 
0

𝛽𝐼Λ

𝜇
(1 − 𝜃)

0
0
0

0
0
0

    

𝛽𝐻Λ

𝜇
(1 − 𝜃)

𝛽𝑉Λ

𝜇
0
0
0

0
0
0 )

 
 

 

and 

𝒢 = (
𝜕ℊ𝑖(𝑥𝑖)

𝜕𝑥𝑖
) = (

𝑘1 0
−𝛼
−𝜖
0

𝑘2
−𝜈
−𝛾𝐼

    

0 0
0
𝑘3
−𝛾𝐻

0
0
𝜔

). 

After computing the eigen values of the matrix 
𝒦 = ℱ𝒢−1, we have the expression of ℛ0, 

ℛ0 =
𝛼𝛽𝐼Λ(1 − 𝜃)

𝜇𝑘1𝑘2
+
𝛽𝐻Λ(1 − 𝜃)(𝛼𝜈 − 𝜖𝑘2)

𝜇𝑘1𝑘2𝑘3
 

 

+
𝛽𝑉Λ(𝛼𝛾𝐼𝑘3 + 𝛼𝛾𝐻𝜈 + 𝛾𝐻𝜖𝑘2)

𝜇𝑘1𝑘2𝑘3𝜔
 

=

𝜔𝑘3𝛼𝛽𝐼Λ(1 − 𝜃) + 𝜔𝛽𝐻Λ(1 − 𝜃)(𝛼𝜈 − 𝜖𝑘2)

+𝛽𝑉Λ(𝛼𝛾𝐼𝑘3 + 𝛼𝛾𝐻𝜈 + 𝛾𝐻𝜖𝑘2)

𝜇𝑘1𝑘2𝑘3𝜔
 

ℛ0 = ℛ0
𝑖𝑠𝑝
+ℛ0

𝑖𝑣𝑒, 

where 

ℛ0
𝑖𝑠𝑝

 =
𝜔𝑘3𝛼𝛽𝐼Λ(1 − 𝜃) + 𝜔𝛽𝐻Λ(1 − 𝜃)(𝛼𝜈 − 𝜖𝑘2)

𝜇𝑘1𝑘2𝑘3𝜔
, 

ℛ0
𝑖𝑣𝑒 =

𝛽𝑉Λ(𝛼𝛾𝐼𝑘3 + 𝛼𝛾𝐻𝜈 + 𝛾𝐻𝜖𝑘2)

𝜇𝑘1𝑘2𝑘3𝜔
. 

Here, ℛ0
𝑖𝑠𝑝

 indicates the average number of 
secondary infections generated by a single 
infected individual introduced to susceptible 
populations directly during their life cycle. ℛ0

𝑖𝑣𝑒 

indicates the average number of secondary 
infections generated by the virus released into 
the environment during its life cycle. 

Local stability analysis 
The general Jacobian matrix associated to 

system (1) is given by 

 

We will prove the local stability of equilibrium 
points following theorems with proofs. 

Theorem 1. The disease-free equilibrium point 
𝑌0 of the proposed COVID-19 epidemic model 
(1) is locally asymptotically stable if ℛ0 < 1 and 
unstable otherwise. 

Proof. Substitute the point 𝑌0 to the general 
Jacobian matrix 𝐽 that yields 

𝐽(𝑌0) =

(

 
 
 
 
 
−𝜇 0

−𝛽𝐼Λ(1 − 𝜃)

𝜇

0 −𝑘1
𝛽𝐼Λ(1 − 𝜃)

𝜇
0
0
0
0

𝛼
𝜖
0
0

−𝑘2
𝜈
𝑟𝐼
𝛾𝐼

    

−𝛽𝐻Λ(1 − 𝜃)

𝜇
𝜌 −𝛽𝑉

𝛽𝐻Λ(1 − 𝜃)

ì
0 𝛽𝑉

0
−𝑘3
𝑟𝐻
𝛾𝐻

0
0
−𝑘4
0

0
0
0
−𝜔)

 
 
 
 
 

 

as per the Routh-Hurwitz criterion, for ℛ0 < 1, 

the disease-free equilibrium point 𝑌0 of the 
proposed model (1) is locally asymptotically 
stable if all eigenvalues 𝜆𝑖 , 𝑖 = 1,2,… ,6 of the 
matrix 𝐽(𝑌0) are negative numbers or have 
negative real parts. We can evaluate these 
eigenvalues from the following characteristics 
polynomial 

|𝐽(𝑌0) − 𝜆𝐼| = 0 
(5) 

where 𝐼 is an identity matrix of order six and 𝜆 
is the eigenvalues. By using cofactor expansion 
method, we get 𝜆1 = −𝜇 < 0 and 𝜆2 = −𝑘4 <
0 and the fourth-order Routh-Hurwitz matrix 
such that, we get the characteristic polynomial 
of the form 

𝑃𝑌0(𝜆) = 𝜆4 + 𝑏1𝜆
3 + 𝑏2𝜆

2 + 𝑏3𝜆 + 𝑏4 = 0  

where 𝑏1, 𝑏2, 𝑏3,and 𝑏4 is given in the Box 1. 

Therefore, the stability when ℛ0 < 1 follows 
the Routh-Hurwitz criterion for fourth-order 
polynomials, the disease-free equilibrium point 
is asymptotically stable if and only if  

i) 𝑏1 > 0 and 𝑏4 > 0, 
ii) ℎ1 = 𝑏1𝑏2 − 𝑏3 > 0, 

iii) ℎ2 = 𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏1
2𝑏4 > 0. 

Theorem 2. The endemic equilibrium point 𝑌∗ 
of the proposed COVID-19 epidemic model (1) 
is locally asymptotically stable if ℛ0 > 1 and 
unstable otherwise. 

𝐽 =

(

 
 
 

−(𝜇 + 𝛽𝑉𝑉 + (1 − 𝜃)(𝛽𝐼𝐼 + 𝛽𝐻𝐻)) 0 −(1 − 𝜃)𝛽𝐼𝑆

𝛽𝑉𝑉 + (1 − 𝜃)(𝛽𝐼𝐼 + 𝛽𝐻𝐻) −𝑘1 (1 − 𝜃)𝛽𝐼𝑆
0
0
0
0

𝛼
𝜖
0
0

−𝑘2

𝜈
𝑟𝐼
𝛾𝐼

    

−(1 − 𝜃)𝛽𝐻𝑆 𝜌 −𝛽𝑉
(1 − 𝜃)𝛽𝐻𝑆 0 𝛽𝑉

0
−𝑘3
𝑟𝐻
𝛾𝐻

0
0
−𝑘4

0

0
0
0
−𝜔)

 
 
 

. 
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Proof. Substitute the point 𝑌∗ to the general 
Jacobian matrix 𝐽 that yields 

𝐽(𝑌∗) =

(

 
 
 

−(𝜇 + 𝑛1) 0 −𝑛2
𝑛1 −𝑘1 𝑛2
0
0
0
0

𝛼
𝜖
0
0

−𝑘2
𝜈
𝑟𝐼
𝛾𝐼

    

−𝑛3 𝜌 −𝛽𝑉
𝑛3 0 𝛽𝑉
0
−𝑘3
𝑟𝐻
𝛾𝐻

0
0
−𝑘4
0

0
0
0
−𝜔)

 
 
 
, 

where 
𝑛1 = 𝛽𝑉𝑉

∗ + (1 − 𝜃)(𝛽𝐼𝐼
∗ + 𝛽𝐻𝐻

∗), 
𝑛2 = (1 − 𝜃)𝛽𝐼𝑆

∗, 
𝑛3 = (1 − 𝜃)𝛽𝐻𝑆

∗. 

as per the Routh-Hurwitz criterion, for ℛ0 > 1, 

the endemic equilibrium 𝑌∗ of the proposed 
model (1) is locally asymptotically stable if all 
eigenvalues 𝜆𝑖 , 𝑖 = 1,2,… ,6 of the matrix 𝐽(𝑌∗) 
are negative numbers or have negative real 
parts. We can evaluate these eigenvalues from 
the following characteristics polynomial 

|𝐽(𝑌∗) − 𝜆𝐼| = 0  (6) 

where 𝐼 is an identity matrix of order six and 𝜆 
is the eigenvalues. Therefore, we get the 
characteristic polynomial of the form 

𝑃𝑌
∗
(𝜆) = 𝜆6 + 𝑏1𝜆

5 + 𝑏2𝜆
4 + 𝑏3𝜆

3 + 𝑏4𝜆
2 

                  +𝑏5𝜆 + 𝑏6 = 0 

where 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, and 𝑏6 is given in Box 1. 

Therefore, the stability when ℛ0 > 1 follows 
the Routh-Hurwitz criterion for sixth-order 
polynomials, the endemic equilibrium point is 
asymptotically stable if and only if  
i) 𝑏1 > 0 and 𝑏6 > 0, 

ii) ℎ3 = 𝑏1𝑏2 − 𝑏3 > 0, 
iii) ℎ4 = 𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏1(𝑏1𝑏4 − 𝑏5) > 0, 

iv) ℎ5 = 𝑏4(𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏1(𝑏1𝑏4 − 𝑏5)) −

𝑏5(𝑏2(𝑏1𝑏2 − 𝑏3) − (𝑏1𝑏4 − 𝑏5)) + 𝑏6𝑏1(𝑏1𝑏2 − 𝑏3) >

0, 

v) ℎ6 = 𝑏5 (𝑏4(𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏1(𝑏1𝑏4 − 𝑏5)) −

𝑏5(𝑏2(𝑏1𝑏2 − 𝑏3) − (𝑏1𝑏4 − 𝑏5)) + 2𝑏6𝑏1(𝑏1𝑏2 −

𝑏3)) − 𝑏6(𝑏3(𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏1(𝑏1𝑏4 − 𝑏5) −

𝑏1
2𝑏2𝑏3)) > 0. 

Sensitivity analysis 
Sensitivity analysis can help analyze the 

parameters that influence the spread of 
disease. The normalized forward sensitivity 
index of a variable ℛ0, depends on a parameter 
𝑝, that is defined in Chitnis et al. [10]. 

Ω𝑝
ℛ0 =

𝜕ℛ0
𝜕𝑝

×
𝑝

ℛ0
, (7) 

where 𝑝 is one of the parameters whose 
sensitivity on ℛ0 is sought. This index implies 
that the higher the value, the more sensitive ℛ0 
is to the parameter. The positive (or negative) 
of the index indicates the increases (or 
decreases) of ℛ0 as 𝑝 increase. Based on the 
parameter values given in Table 2, we get ℛ0 =
6.238762263 . The sensitivity index of the 
parameters to ℛ0 given in Table 3. 

Table 2. Parameter values and sources 

Parameters Value Sources 

Λ 40 [9] 
𝛽𝐼 0.55 [8] 
𝛽𝐻 0.05 Estimated 
𝛽𝑉 0.3 [8] 
𝜃 0.61 [9] 
𝛼 0.08 [9] 
𝜖 0.37 [9] 
𝜈 0.08 [9] 
𝑟𝐼 0.2 [9] 
𝑟𝐻 0.65 [9] 
𝛾𝐼 0.1 [8] 
𝛾𝐻 0.05 Estimated 
𝑑 0.011 Estimated 
𝜇 0.5 Estimated 
𝜔 0.172 [8] 
𝜌 0.05 Estimated 

Table 3. Sensitivity index to ℛ0 

Parameters Sensitivity index to ℛ0 

𝜇 -2.07027958 

Λ 1 

𝛽𝑉 0.621457651 

𝜔 -0.621457651 

𝜃 -0.592079059 

𝛼 0.45676089 

𝛾𝐻 0.383349503 

𝛽𝐼 0.2928254 

𝑟𝐻 -0.26261257 

𝛾𝐼 0.238108148 

𝑟𝐼 -0.136781648 

𝛽𝐻 0.085716949 

𝜖 0.0695549 

𝜈 -0.044674791 

𝑑 -0.011967203 

For our proposed COVID-19 epidemic model 
(1), we follow the analysis done by Chitnis et al. 
[10]. A positive sensitivity index indicates an 
increase in the parameter leads to an increase 
of ℛ0, while a negative sensitivity index 
indicates an increase in the parameter leads to 
a decrease of ℛ0. Among these parameters, 
Λ, 𝛽𝑉 , 𝛽𝐼 , 𝛾𝐻 , 𝛾𝐼 , 𝛼, 𝜖, and 𝛽𝐻 have the positive 
index and 𝜇, 𝜔, 𝜃, 𝑟𝐻 , 𝑟𝐼 , 𝜈, and 𝑑 have the 
negative index. Thus, the sensitivity analysis 
results show 𝜇, Λ, 𝛽𝑉 , and 𝜔 are the most 
influential parameters for proposed model (1).  

In Table 4 and Table 5, we show the 
influences of the increase (or decrease) of 
parameters to ℛ0. The positive sensitivity index 
given in Table 4 shows that with an increase (or 
decrease) of one parameter, the ℛ0 will get an 
addition (or reduction) and the endemic rate 
will increase (or decrease). The negative 
sensitivity index given in Table 5 shows that 
with an increase (or decrease) of one 
parameter, the ℛ0 will get a reduction (or 
addition) and the endemic rate will decrease 
(or increase). 
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Disease-free equilibrium Endemic equilibrium 
𝑏1 = 𝜔 + 𝑘1 + 𝑘2 + 𝑘3 

𝑏2 = 𝜔(𝑘1 + 𝑘2 + 𝑘3) + 𝑘1(𝑘2 + 𝑘3) + 𝑘2𝑘3

−
Λ

𝜇
(1 − 𝜃)(𝛼𝛽𝐼 + 𝜖𝛽𝐻) 

𝑏3 = 𝑘1𝑘2𝑘3 +𝜔(𝑘1(𝑘2 + 𝑘3) + 𝑘2𝑘3)

−
Λ

𝜇
(1 − 𝜃)(𝛼(𝜈𝛽𝐻 + (𝜔 + 𝑘3)𝛽𝐼)

+ 𝜖𝛽𝐻(𝜔 + 𝑘2)) − 𝛽𝑉(𝛼𝛾𝐼 + 𝜖𝛾𝐻) 

𝑏4 = 𝜔𝑘1𝑘2𝑘3 −
Λω

𝜇
(1 − 𝜃)(𝛼(𝜈𝛽𝐻 + 𝑘3𝛽𝐼) + 𝜖𝑘2𝛽𝐻)

− 𝛼𝛽𝑉(𝛾𝐻(𝜈 + 𝑘2) + 𝛾𝐼𝑘3) 
 
 

𝑏4 = 𝜇(𝜔(𝑘1(𝑘2 + 𝑘3 + 𝑘4) + 𝑘2(𝑘3 + 𝑘4) + 𝑘3𝑘4)

+ 𝑘1𝑘2(𝑘3 + 𝑘4) + 𝑘3𝑘4(𝑘1 + 𝑘2))

+ 𝜔(𝑘1(𝑘2(𝑘3 + 𝑘4) + 𝑘3𝑘4)

+ 𝑛1(𝑘1(𝑘2 + 𝑘3 + 𝑘4) + 𝑘2(𝑘3 + 𝑘4)

+ 𝑘3𝑘4))

+ 𝑛1(𝑘1𝑘2(𝑘3 + 𝑘4)

+ 𝑘3𝑘4(𝑘1 + 𝑘2)) + 𝑘1𝑘2𝑘3𝑘4
− 𝛼(𝜇(𝑛2(𝜔 + 𝑘3 + 𝑘4) + 𝑛3𝜈

+ 𝛽𝑉𝛾𝐼) + 𝜈(𝑛3(𝜔 + 𝑘4) + 𝛽𝑉𝛾𝐻)

+ 𝜔𝑛2(𝑘3 + 𝑘4))

− 𝜖(𝜇(𝑛3(𝜔 + 𝑘2 + 𝑘4) + 𝛽𝑉𝛾𝐻)
+ 𝜔𝑛3(𝑘2 + 𝑘4) + 𝛽𝑉𝛾𝐻(𝑘2 + 𝑘4)
+ 𝑛3𝑘2𝑘4 + ñ𝑛1𝑟𝐻), 

𝑏5 = 𝜇𝜔(𝑘1𝑘2(𝑘3 + 𝑘4) + 𝑘3𝑘4(𝑘1 + 𝑘2))

+ (𝜇 + 𝜔 + 𝑛1)𝑘1𝑘2𝑘3𝑘4
+ 𝜔𝑛1(𝑘1𝑘2(𝑘3 + 𝑘4)

+ 𝑘3𝑘4(𝑘1 + 𝑘2))

− 𝛼(𝜇(𝜈(𝑛3(𝜔 + 𝑘4) + 𝛽𝑉𝛾𝐻)

+ (𝜔𝑛2 + 𝛽𝑉𝛾𝐼)(𝑘3 + 𝑘4) + 𝑛2𝑘3𝑘4)
+ 𝜈(𝑘4(𝑛3𝜔 + 𝛽𝑉𝛾𝐻) + 𝜌𝑛1𝑟𝐻)
+ 𝜔(𝜌𝑛1𝑟𝐼 + 𝑛2𝑘3𝑘4)

+ 𝑘3(𝜌𝑛1𝑟𝐼 + 𝛽𝑉𝛾𝐼𝑘4))

− 𝜖 (𝜇((𝜔𝑛3 + 𝛽𝑉𝛾𝐻)(𝑘2 + 𝑘4)

+ 𝑛3𝑘2𝑘4) + 𝜔(𝜌𝑛1𝑟𝐻 + 𝑛3𝑘3𝑘4)

+ 𝑘2(𝜌𝑛1𝑟𝐻 + 𝛽𝑉𝛾𝐻𝑘4)), 

𝑏6 = 𝜔(𝑘1𝑘2𝑘3𝑘4(𝜇 + 𝑛1))

− 𝛼 (𝜇 (𝑘4(𝜈(𝜔𝑛3 + 𝛽𝑉𝛾𝐻)

+ 𝑘3(𝜔𝑛2 + 𝛽𝑉𝛾𝐼)))

+ 𝜔𝜌𝑛1(𝜈𝑟𝐻 + 𝑘3𝑟𝐼))

− 𝜖(𝑘2(𝜇𝑘4(𝜔𝑛3 + 𝛽𝑉𝛾𝐻)

+ 𝜔𝜌𝑛1𝑟𝐻)). 

Endemic equilibrium 
𝑏1 = 𝜇 + 𝜔 + 𝑛1 + 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4, 
𝑏2 = 𝜇(𝜔 + 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4)

+ 𝜔(𝑛1 + 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4)
+ 𝑘1(𝑘2 + 𝑘3 + 𝑘4) + 𝑘2(𝑘3 + 𝑘4)
+ 𝑘3𝑘4 + 𝑛1(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4)
− 𝛼𝑛2 − 𝜖𝑛3, 

𝑏3 = 𝜇(𝜔(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4) + 𝑘1(𝑘2 + 𝑘3 + 𝑘4)
+ 𝑘2(𝑘3 + 𝑘4) + 𝑘3𝑘4)
+ 𝜔(𝑛1(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4)
+ 𝑘1(𝑘2 + 𝑘3 + 𝑘4) + 𝑘2(𝑘3 + 𝑘4)

+ 𝑘3𝑘4) + 𝑘1(𝑘2(𝑘3 + 𝑘4))

+ 𝑘3𝑘4(𝑘1 + 𝑘2)
+ 𝑛1(𝑘1(𝑘2 + 𝑘3 + 𝑘4)
+ 𝑘2(𝑘3 + 𝑘4) + 𝑘3𝑘4)
− 𝛼(𝑛2(𝜇 + 𝜔 + 𝑘3 + 𝑘4) + 𝜈𝑛3
+ 𝛽𝑉𝛾𝐼)
− 𝜖(𝑛3(𝜇 + 𝜔 + 𝑘2 + 𝑘4) + 𝛽𝑉𝛾𝐻), 

Box 1

Numerical simulations 
This section aids in predicting the stability of 

the model (1) numerically using the fourth-
order Runge-Kutta method with the help of 
MATLAB software. The numerical simulations 
are used to verify the analytical results. 

Table 4.  Influences of the positive sensitivity index 
parameters to ℛ0 

No. 
Parameter 
(𝒑) 

𝓡𝟎 value 

𝒑 + 𝟏𝟎% 𝒑 − 𝟏𝟎% 

1. Λ 6.862638485 5.614886035 

2 𝛽𝑉 6.626474917 5.851049609 

3. 𝛼 6.521344877 5.951379936 

4. 𝛾𝐻 6.477924903 5.999599620 

5. 𝛽𝐼 6.421449069 6.056075458 

6. 𝛾𝐼 6.387312276 6.090212250 

7. 𝛽𝐻 6.292239030 6.185285497 

8. 𝜖 6.280529198 6.193610053 

Table 5.  Influences of the negative sensitivity index 
parameters to ℛ0 

No. 
Parameter 
(𝒑) 

𝓡𝟎 value 

𝒑 + 𝟏𝟎% 𝒑 − 𝟏𝟎% 

1. 𝜇 5.110513732 7.738847295 

2. 𝜔 5.886296211 6.6695541 

3. 𝜃 5.869378215 6.608146312 

4. 𝑟𝐻 6.083610862 6.412316656 

5. 𝑟𝐼 6.155531881 6.326310693 

6. 𝜈 6.211169788 6.266918568 

7. 𝑑 6.231305433 6.246237566 

Simulation on disease-free equilibrium points 
The parameters used for this simulation is 

from Table 2 except 𝑑 = 0.5, 𝜇 = 0.8, 𝜔 =
1.72, and 𝛽𝑉 = 0.03 with ℛ0 =
0.5942745861 < 1. The disease-free 

equilibrium point 𝑌0 = (
Λ

𝜇
, 0,0,0,0,0) =

(50,0,0,0,0,0). 
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Local stability analysis based on Routh-
Hurwitz criterion where 
i) 𝑏1 = 6.5 > 0 and 𝑏4 = 2.7539565 > 0, 

ii) ℎ1 = 81.832575 > 0, 

iii) ℎ2 = 897.8537228 > 0. 

where 𝑏2 = 14.49635, and 𝑏3 = 12.3937.  

These show that Routh-Hurwitz criterion is 
fulfilled and the characteristics polynomial have 
negative real parts. 

Figure 2 shows that using initial condition 
𝑁𝐴 = (100,60,20,20,10,50), the susceptible 
subpopulation ends at equilibrium point 50, 
and the other subpopulations end at 
equilibrium points. It means that the numerical 
simulation approve of the analytical results. 

 
Figure 2. Numerical simulation when ℛ0 < 1 

Simulation on endemic equilibrium points 
The parameters used for this simulation is 

from Table 2 with ℛ0 = 6.238762263 > 1. 𝑌∗ 
exists where 𝑘1𝜇 < Λ(𝑎4 + 𝑎5) = 0.475 <
2.963412073 and 𝑎3 < 𝑘1 =
0.02108240255 < 0.95. Based on those 
parameters we get the endemic equilibrium  

𝑌∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗, 𝑉∗)
= (12.82305634, 36.15872058, 3.657013458,  

11.77544159, 15.24625405, 5.549264101). 

Local stability analysis based Routh-Hurwitz 
criterion where 
i) 𝑏1 = 6.802829728 > 0 and  

𝑏6 = 0.24046706 > 0, 
ii) ℎ3 = 91.79853862 > 0, 
iii) ℎ4 = 1209.367776 > 0, 
iv) ℎ5 = 8872.761805 > 0, 
v) ℎ6 = 93025.31869 > 0. 

where 𝑏2 = 16.17011194, 𝑏3 = 18.20397962,       

𝑏4 = 18.20397962, and 𝑏5 = 2.705938479.  

These show that Routh-Hurwitz criterion is 
fulfilled and the characteristics polynomial have 
negative real parts. Figure 3 shows that using 
initial condition 𝑁𝐴 = (100,60,20,20,10,50), 
all of the subpopulations end at the equilibrium 
point 𝑌∗. It means that the numerical 
simulation approves the analytical results. 

 
Figure 3. Numerical simulation when ℛ0 > 1 

Numerical simulations of the influences of the 
changed parameters to 𝑬 and 𝑰 

From the sensitivity analysis, we got 
parameters that have influences on ℛ0. Here, 
we give numerical simulations for the high 
sensitivity index and the low sensitivity index to 
see which one has the gretest influence on the 
population. 

It can be seen that in Figure 4 and Figure 5, 
when 𝛽𝑉 value is increased, ℛ0 will increase 
from 6.238762263 to 6.626474917 and the 
subpopulations of 𝐸 and 𝐼 also increase. When 
𝛽𝑉 value is decreased then ℛ0 will decrease to 
5.851049609 and the subpopulations of 𝐸 and 𝐼 
also decrease. 

In Figure 6 and Figure 7, when 𝛽𝐻 value is 
increased, ℛ0 will increase from 6.238762263 
to 6.292239030 and the subpopulations of 𝐸 
and 𝐼 also increase. When  𝛽𝑉 value is 
decreased then ℛ0 will decrease to 
6.185285497 and the subpopulations of 𝐸 and 𝐼 
also decrease. 

 
Figure 4. Influence of 𝛽𝑉 to 𝐸 

 
Figure 5. Influence of 𝛽𝑉 to 𝐼 
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Figure 6. Influence of 𝛽𝐻 to 𝐸 

 
Figure 7. Influence of 𝛽𝐻 to 𝐼 

From the description above, we can 
conclude as follows. 𝛽𝑉, as a parameter with 
higher sensitivity index, have a more significant 
influences to the increase (or decrease) of ℛ0 
for each change of parameter value than 𝛽𝐻 
that has lower sensitivity index. 

CONCLUSION 
In this paper, we have proposed and 

investigated a mathematical model of the 
COVID-19 epidemic involving viruses in the 
environment. This model has been used to 
describe the transmission in the dynamics of 
the infection and affirms the role of the virus in 
the environment to the spread of COVID-19 
disease. The model is numerically simulated to 
aid the analytical results that have been done. 
We have proposed a detailed analysis of the 
model, including the derivation of equilibrium 
points, disease-free and endemic, and the basic 
reproduction number ℛ0. The local stability 
analysis of the model fulfilled the Routh-
Hurwitz criterion and the sensitivity analysis 
was also done to know the parameters that 
have more influence on ℛ0. The numerical 
simulations are used to aid and approve the 
analytical results and prove the sensitivity 
analysis of the model's parameters. The 
simulations show that 𝛽𝑉 has more influences 
on ℛ0 for it has a more sensitivity index than 
𝛽𝐻. 
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