Virtual Prediction of The Effect Phenolic And Glucosinolate Compounds In Broccoli (Brassica Oleracea) On Anti-aging As Stimulant Nrf-2
DOI:
https://doi.org/10.21776/ub.jels.2020.010.02.05Abstract
Aging is caused by an imbalance between antioxidants and ROS. Nuclear Factor Erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates antioxidant genes. Under normal conditions, Nrf2 will bind keap1 and cause degradation of Nrf2. Nrf2 activation can be stimulated by secondary metabolites, such as glucosinolate (glucoraphanin and sulforaphane) and phenolic (kaempferol and quercetin) groups found in broccoli (Brassica oleracea). The purposes of this study were to analyze the interaction of the four compounds with Keap1 through molecular docking, to identify interactions that inhibit Keap1, and also to know the bioactivity scores, drug-likeness, and bioactivity prediction of each compound. The Nrf2-Keap1 protein (ID: 2FLU) structure was retrieved from the protein database, whereas the quercetin (CID: 5280343); kaempferol (CID: 5280863), sulforaphane (CID: 5350), and glucoraphanin (CID: 656556) were obtained from the PubChem Database. Molecular docking was done with HEX 8.0. The docking results were visualized with Discovery Studio 2020. Drug-likeness and bioactivity scores of the compounds were identified using mollinspiration. Prediction of bioactivity was carried out with PASS Online. The results showed that the binding energy of quercetin with Keap1 was -268.72 kcal.mol-1, and glucoraphanin with Keap1 was -318.01 kcal.mol-1. We found that quercetin from the phenolic group and glucoraphanin from the glucosinolate group had a strong interaction with Keap1, indicated by the number of interactions occurred and the smaller energy needed. Hence both compounds could inhibit the interaction of Keap1-Nrf2. Consequently, Nrf2 could transcribe antioxidant genes. The interaction between Keap1 and quercetin may play a role related to ROS reduction activities, such as enhancing HMOXI expression. This study indicates that quercetin has more potential in drug development as peroxidase inhibitors.Keyword: Aging, bioinformatic, glucoraphanin, keap1, quercetin
Downloads
Published
2021-01-25
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).