Assessing the Genotoxicity Effect of a Commercial Chlorpyrifos Formulation in Fejervarya limnocharis Tadpoles (Anura: Dicroglossidae) Under Acute and Chronic Exposure


  • Shima Ramadani Brawijaya University
  • Agung Pramana Warih Marhendra
  • Nia Kurniawan



Chlorpyrifos, F. limnocharis, Genotoxicity, Micronucleus Assay, Tadpoles


The potential for genotoxicity of pesticides is currently one of the world's concerns. Chlorpyrifos is the organophosphate active ingredient with the largest sales, but the potential for genotoxicity in amphibians is still not widely known. The purpose of this study was to assess the genotoxicity effect of a commercial chlorpyrifos formulation Dursban 200EC in F. limnocharis tadpole erythrocyte (Anura: Dicroglossidae) under acute and chronic exposure using by micronucleus assay. Acute and chronic toxicity tests consisted of negative control, positive control, and 0.4, 0.8, and 1 µg.L-1 of chlorpyrifos with three replications. A toxicity test was carried out on ten tadpoles (Gosner 25) from artificial reproductions in each treatment. The results showed that the formulation of Dursban 200EC in low concentrations (0.4 µg l-1) had the potential to induce DNA damage in erythrocytes of F. limnocharis tadpoles, and there was a positive correlation between chlorpyrifos concentrations and an increase in the frequency of MN. Erythrocytes exposed to chlorpyrifos in both acute and chronic treatment had significantly different MN frequencies between negative and positive controls, 0.4, 0.8, and 1 µg.L-1 (p<0.01). Meanwhile, positive controls were not significantly different from 1 µg.L-1 ( p>0.05). However, the increase in the frequency of MN in chronic treatment was almost twice as high.

Keywords: Chlorpyrifos, F. limnocharis, Genotoxicity, Micronucleus Assay, Tadpoles


. Pereira, J. L., S. C. Antunes, B. B. Castro, C. R. Marques, A. M. M. Goncalves, F. Goncalves, R. Pereira. 2009. Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology. 18. 4:455–463.

. Lizano-Fallas, V., M. Masis-Mora, D. M. Lizano-Brenes, C. E. Rodríguez-Rodríguez. 2017. Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures. Chemosphere. 182:106–113.

. Mann, R. M., R. V. Hyne, C. B. Choung, S. P. Wilson. 2009. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environmental Pollution. 157. 11:2903–2927.

. Mainguy, G., P. J. Bishop, A. Angulo, J. P. Lewis, R. D. Moore, G. B. Rabb, J. G. Moreno. 2012. The Amphibian Extinction Crisis - what will it take to put the action into the Amphibian Conservation Action Plan? 5. 2:97-111.

. Egea-Serrano, A., R. A. Relyea, M. Tejedo, M. Torralva. 2012. Understanding of the impact of chemicals on amphibians: a meta-analytic review: Impact of Pollution on Amphibians. Ecology and Evolution. 2. 7:1382–1397.

. Alroy, J. 2015. Current extinction rates of reptiles and amphibians. Proceedings of the National Academy of Sciences. 112. 42:13003–13008.

. Gómez-Canela, C., E. Prats, B. Piña, R. Tauler. 2017. Assessment of chlorpyrifos toxic effects in zebrafish (Danio rerio) metabolism. Environmental Pollution. 220:1231–1243.

. Cherin, P. 1997. Recognition and Management of Myositis. Drugs. 54. 1: 39–49.

. Li, B., Y. Ma, Y. H. Zhang. 2017. Oxidative stress and hepatotoxicity in the frog, Rana chensinensis, when exposed to low doses of trichlorfon. Journal of Environmental Science and Health. Part B 52. 7:476–482.

. Koshlukova, S. E., N. R. Reed. 2014. Chlorpyrifos. In: Encyclopedia of Toxicology. Elsevier. pp 930–934.

. Da Silva, M.B., R.E. Fraga, F.L. Silva, L.A.A. De Oliveira, T.S. De Queiroz, M.A. Rocha, F. A. Junca. 2020. Genotoxic effect of the insecticide chlorpyrifos on erythrocytes of Odontophrynus carvalhoi tadpoles (Amphibia: Odontophrynidae). Ecotoxicology and Environmental Contamination. 15. 1:9-13.

. Arcaute, de R. C., C. S. Costa, P. M. Demetrio, G. S. Natale, A. E. Ronco. 2012. Influence of existing site contamination on sensitivity of Rhinella fernandezae (Anura, Bufonidae) tadpoles to Lorsban®48E formulation of chlorpyrifos. Ecotoxicology. 21. 8: 2338-2348.

. Da Silva, M.B., R.E. Fraga, F.L. Silva, L.A.A. De Oliveira, T.S. De Queiroz, M.A. Rocha, F. A. Junca. 2020. Effects of acute exposure of chlorpyrifos on the survival, morphology and swimming ability of Odontophrynus carvalhoi tadpoles. Ecotoxicology and Environmental Contamination. 15. 1:37-42.

. Deb, N., S. Das. 2013. Chlorpyrifos Toxicity in Fish: A Review. Current World Environment Journal. 8. 1: 1-7.

. Rutkoski, C. F., N. Macagnan, A. Folador, V. J. Skovronski, A. M. B. do Amaral, J. Leitemperger, M. D. Costa, P. A. Hartmann, C. Muller, V. L. Loro, M. T. Hartmann. 2020. Morphological and Biochemical Traits and Mortality in Physalaemus Gracilis (Anura: Leptodactylidae) Tadpoles Exposed to the Insecticide Chlorpyrifos, Chemosphere. 250. 126162.

. Uniyal, S., R. K. Sharma, V. Kondakal. 2021. New insights into the biodegradation of chlorpyrifos by a novel bacterial consortium: Process optimization using general factorial experimental design. Ecotoxicology and Environmental Safety. 209. 3-4: 111799.

. Rahman, M., M. Mahboob, K. Danadevi, B. Banu. 2002. Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 516. 1–2: 139–147.

. Bernabò, I., E. Sperone, S. Tripepi, E. Brunelli. 2011. Toxicity of Chlorpyrifos to Larval Rana Dalmatina: Acute and Chronic Effects on Survival, Development, Growth and Gill Apparatus. Archives of Environmental Contamination and Toxicology. 61. 4: 7–18.

. Palenske, N. M., G. C. Nallani, E. M. Dzialowski. 2010. Physiological Effects and Bioconcentration of Triclosan on Amphibian Larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 152. 2: 32–40.

. Aronzon, C. M., M. T. Sandoval, J. Herkovits, C. S. Pérez-Coll. 2011. Stage-Dependent Toxicity of 2,4-Dichlorophenoxyacetic on the Embryonic Development of a South American Toad, Rhinella Arenarum. Environmental Toxicology. 26.4: 73–81.

. Yin, X., G. Zhu, X. B. Li, S. Liu. 2009. Genotoxicity Evaluation of Chlorpyrifos to Amphibian Chinese Toad (Amphibian: Anura) by Comet Assay and Micronucleus Test. Mutation Research/Fundamental and Molecular Mechanism of Mutagenesis. 680. 1-2:2-6.

. Jha, A. N. 2004. Genotoxicological studies in aquatic organisms: an overview. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 552. 1–2: 1–17.

. Sparling, D W., G. Fellers. 2007. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Environmental Pollution. 147. 3: 5-9.

. Gurushankara, H. P., S. V. Krishnamurthy, V. Vasudev. 2007. Effect of Malathion on Survival, Growth, and Food Consumption of Indian Cricket Frog (Limnonectus Limnocharis) Tadpoles. Archives of Environmental Contamination and Toxicology. 52. 2:51–56.

. Nataraj, M. B., K. S. Venkatarama. 2013. Exposure of tadpoles of Fejervarya limnocharis (Anura: Ranidae) to combinations of carbaryl and cypermethrin. Toxicological & Environmental Chemistry. 95. 8: 1408–1415.

. Nataraj, M. B. R., K. S. Venkatarama. 2020. Individual and Combined Effects of Organophosphate and Carbamate Pesticides on the Cricket Frog Fejervarya Limnocharis, Environmental Geochemistry and Health. 42. 6:67–74.

. Gurushankara, K. V. 2007. Morphological abnormalities in natural populations of common frogs inhabiting agroecosystems of central Western Ghats. Applied Herpetology. 4. 1: 39–45.

. Ciccia, A., S. J. Elledge. 2010. The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell. 40. 2: 179–204.

. Nataraj, M. B. R., K. S. Venkatarama. 2012. Effects of combinations of malathion and cypermethrin on survivability and time of metamorphosis of tadpoles of Indian cricket frog (Fejervarya limnocharis). Journal of Environmental Science and Health. Part B 47. 2: 67–73.

. Lajmanovich, R. C., M. Cabagna, P. M. Pelzer, G. A. Stringhini, M. A. Attademo. 2005. Micronucleus induction in erythrocytes of the Hyla pulchella tadpoles (Amphibia: Hylidae) exposed to insecticide endosulfan. Mutat. Res. 587. 67- 72.

. Marque, S. M., S. C. Antunes, H. Pissarra, M. L. Pereira, F. Goncalves, R. Pereira. 2009. Histopathological changes and erythrocytic nuclear abnormalities in Iberian green frogs (Rana perezi Seoane) from a uranium mine pond. Aquat. Toxicol. 91. 187–195.

. Li, X., S. Liu, G. Zhu. 2010. Lethal Effect and in Vivo Genotoxicity of Profenofos to Chinese Native Amphibian (Rana spinosa) Tadpoles. Arch. Environ. Contam. Toxicol. 59, 478– 483.

. Bosch, B., F. Manas, N. Gorla, D. Aiassa. 2011. Micronucleus test in post metamorphic Odontophrynus cordobae and Rhinella arenarum (Amphibia: Anura) for environmental monitoring. J. Toxicol. Environ Health. 3. 155-163.

. Kurniawan, N., D. M. Belabut, H. S. Yong, M. Sumida. 2009. Conservation of Fejervarya cancrivora by Artificial Reproduction. Prosiding Bioteknologi. 474-486.

. Gosner, K.L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 16. 183-189.

. Yin, X., S.N. Li, L. Zhang, G.N. Zhu, H.S. Zhuang. 2008. Evaluation of DNA damage in Chinese toad (Bufo bufo gargarizans) after in vivo exposure to sublethal concentrations of four herbicides using the comet assay. Ecotoxicology. 17. 280–286.

. Huang, D. J., Y.M. Zhang, Y.J. Wang, Z.Y. Xie, W.H. Ji. 2007. Assessment of the genotoxicity in toad Bufo raddei exposed to petrochemical contaminants in Lanzhou Region, China. Mutat. Res. 629. 81–88.

. Ali, D., N. S. Nagpure, S. Kumar, R. Kumar, B. Kushwaha, W. S. Lakra. 2009. Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food and Chemical Toxicology. 47. 3: 650–656.

. Fernandez, M., J. L'Haridon, L. Gauthier, C. Zoll-Moreux. 1993. Amphibian micronucleus test(s): a simple and reliable method for evaluating in vivo genotoxic effects of freshwater pollutants and radiations. Initial assessment. Mutation Research/Environmental Mutagenesis and Related Subjects. 292. 1: 83–99.

. Bhatnagar, A., A. S. Yadav, N. Cheema. 2016. Genotoxic Effect of Chlorpyrifos in Freshwater Fish Cirrhinus mrigala Using Micronuclues Assay. 2016. 2: 1-6.

. Fenech, M., M. Kirsch-Volders, A. T. Natarajan, J. Surralles, J. W. Crott, J. Parry, H, Norppa, D. A. Eastmod, J. D. Tucker, P. Thomas. 2011. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 26. 1:125–132.

. Yadav, A. S., A. Bhatnagar, M. Kaur. 2010. Assessment of genotoxic effects of butachlor in fresh water fish, Cirrhinus mrigala (Hamilton). Research Journal of Environmental Toxicology. 4. 4: 223–230.

. Ismail, M., Q. M. Khan, R. Ali, T. Ali, A. Mobeen. 2014. Evaluation of genotoxicity of chlorpyrifos in common Indus Valley Toad, Bufo stomaticus using alkaline single cell gel electrophoresis (Comet Assay. Agricultural Sciences. 5. 4: 376–382.

. Wells, P. G., Y. Bhuller, C. S. Chen, W. Jeng, S. E. N. Kasapinovic, J. C. Kennedy, P. M. Kim, R. Laposa, G. P. McCallum, C. J. Nicol, T. Parman, M. J. Wiley, A. W. Wong. 2005 Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicology and Applied Pharmacology. 207. 2: 354–366.

. Liendro N., A. Ferrari, M. Mardirosian, C. Lascano, A. Venturino. 2015. Toxicity of the insecticide chlorpyrifos to the South American toad Rhinella arenarum at larval developmental stage. Environmental Toxicology and Pharmacology. 39. 2: 525–535.